Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Координатная плоскость (6 класс)

Гипермаркет знаний>>Математика>>Математика 6 класс>>Математика: Координатная плоскость


Содержание

Что такое координатная плоскость?

Термин «координаты» в переводе с латинского языка значит слово «упорядоченный».

Допустим, нам нужно обозначить положение точки на плоскости. Для этого мы берем 2 перпендикулярные прямые, которые называются осями координат, где Х будет осью абсцисс, У- осью ординат, а началом координат будет точка О. Образованные с помощью осей координат прямые углы, будут называться координатными углами.

Так мы подошли к определению и теперь знаем, что координатной плоскостью является плоскость с заданной системой координат.

А теперь давайте посмотрим, нумерацию координатных углов:


коорд. плоскость

Теперь давайте с вами отобразим прямоугольную систему координат и отметим в ней точку M.


коорд. плоскость

Далее нам нужно прочертить через точку М прямую, которая будет параллельна оси У. Теперь, смотрим, что у нас вышло. Как видим, что прямая пересекает ось Х в той точке, в которой координата будет равна −2. Данная координата является абсциссой точки M.

Теперь нам нужно прочертить через точку М прямую, которая будет параллельна оси Х.

Мы с вами видим, что эта прямая пересекает ось Х в той точке, координата которой равняется трем. Вот эта координата будет ординатой точки М.

Запись координат токи М будет выглядеть так:

M(x;y)

В такой записи всегда на первое место ставят абсциссу, а на второе – ординату. Если рассмотреть на примере координат точки М(-2;3), то -2 выступает в роли абсциссы точки М, а ординатой этой точки будет число 3.

Из этого следует, что на координатной плоскости каждой точке М соответствует такая пара чисел, как ее абсцисса и ордината. Верным будет и утверждение наоборот, то есть, каждой такой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Задание:


коорд. плоскость

Координатная плоскость в жизни

Как по вашему, может ли пригодиться в повседневной жизни знания о координатной плоскости? И доводилось ли вам слышать такую фразу, как «оставьте свои координаты» или «по каким координатам вас можно найти»? И задумывались ли вы над тем, что может обозначать эти выражения?

Оказывается все очень просто и банально и это значит местонахождение того или иного объекта, по которому легко найти человека или какое-то определенное место. Можно уверенно утверждать, что системы координат необходимы в практической жизни человека повсеместно.

Такой системой координат может быть как домашний адрес, так и номер телефона, место работы и т.д.

Ведь даже при покупке билетов на поезд, вы знаете не только его номер и место назначения, но и обязательно должен быть указан номер вагона и места.

Чтобы пойти в гости к однокласснику, недостаточно знать только дом, в котором он живет, а нужно еще и знать номер квартиры.

Задание

1. Какими сведениями вы должны владеть, чтобы занять место в театре?
2. Какие данные нужно иметь, чтобы определить точки на земной поверхности?
3. По каким координатам можно определить место в кинотеатре?
4. Что необходимо знать, чтобы определелить положения фигуры на шахматной доске?
5. Какими координатами вы пользуетесь при игре в морской бой?

Историческая справка

Идея использования координат появилась еще в глубокой древности. Первоначально их применять начали астрономы, для определения небесных светил и географы – для определения местонахождения и объектов на поверхности Земли.

Благодаря трудам древнегреческого астронома Клавдия Плотомея уже во втором веке ученые научились определять долготу и широту.

А известно ли вам, почему в математике существует такое понятие, как «Декартова система координат»? Оказывается метод координат, который имеет общематематическое значение, был открыт французскими математиками Пьером Ферма и Рене Декартом в XVII в., а в 1637 году Рене Декарт впервые описал его в книге по геометрии.

А вот термины «абсцисса», «ордината» и «координаты» были впервые введены Вильгельмом Лейбницем в семнадцатом веке.

Домашнее задание:


коорд. плоскость

коорд. плоскость