Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Координатна площина

Гіпермаркет Знань>>Математика>>Математика 6 клас>>Координатна площина

Положення точки на координатній прямій визначається числом — координатою цієї точки. Положення точки на площині можна задати двома числами. Розглянемо приклад. Місця для глядачів у залі кінотеатру можна задавати парою чисел: перше число вказує на номер ряду, а друге — на номер крісла у цьому ряді (рис. 69). До того ж, місця (3; 7) і (7; 3) — різні: перше є кріслом у третьому ряді за номером 7, а друге — кріслом у сьомому ряді за номером 3.


Координатна площина

Проведемо дві перпендикулярні координатні прямі, які перетинаються в початку їх відліку — точці О й мають рівні одиничні відрізки (рис. 70). Ці прямі називають осями координат, точку О — початком координат. Горизонтальну координатну пряму називають віссю абсцис і позначають буквою х, вертикальну координатну пряму називають віссю ординат і позначають буквою у. Вісь абсцис і вісь ординат утворюють прямокутну систему координат. Площину, на якій задана прямокутна система координат, називають координатною площиною.


система координат


Нехай А — точка координатної площини (рис. 71). Проведемо через неї пряму Ь, перпендикулярну до осі абсцис, і пряму с, перпендикулярну до осі ординат. Нехай у перетині з віссю абсцис одержимо точку В з координатою -3, а в перетині з віссю ординат — точку С з координатою 2.

координати


Положення точки А на координатній площині визначається парою чисел (-3; 2), які називаються координатами цієї точки. Координати точки записують у дужках: А(-3; 2), читають: точка А з координатами -3 і 2. Першу координату точки А (число -3) називають абсцисою цієї точки, а другу координату (число 2) — ординатою. Точка К (рис. 71), навпаки, має абсцису 2 й ординату -3, тому К(2; -3) (на першому місці завжди записують абсцису точки, а на другому — її ординату). Якщо точка лежить на осі абсцис, то її ордината дорівнює нулю; якщо точка лежить на осі ординат, то її абсциса дорівнює нулю. Точки М i N (рис. 71) мають координати: M(4; 0), N(0; -2).

Математика Asd340.jpg


Отже, кожній точці координатної площини відповідає одна пара чисел — її абсциса й ордината. Навпаки, будь-якій упорядкованій парі чисел відповідає одна точка площини, для якої ці числа є координатами. Щоб побудувати, наприклад, точку D(-4; 3), можна провести перпендикулярну пряму до осі х у точці (-4; 0) і перпендикулярну пряму до осі у в точці (0; 3) (рис. 72). Точка О перетину цих прямих має координати (-4; 3). Побудувати точку D(-4; 3) можна також, відрахувавши від точки О ліворуч 4 одиниці, а потім від одержаної точки вгору 3 одиниці. Осі координат розбивають площину на 4 частини, які називають координатними чвертями. Нумерація чвертей і знаки координат точок у кожній чверті показані на рисунку 73.    


Усно

1331.   а) Назвіть координати точок, зображених на рисунку 77. б)    Чому дорівнює абсциса точки А; С; М ? в)    Чому дорівнює ордината точки О; N; О? г)    Назвіть абсциси точок, що лежать на осі ординат. д)    Назвіть точки, ординати яких дорівнюють 0. е)    У якій чверті лежить точка О; С; А; Е?

Назвіть координати точок


Рівень А

1332.    Табір туристів розташований у точці О (рис. 75), довжині однієї клітинки відповідає відстань 1 км. Знайдіть координати місця, в яке прийдуть тури- сти, вийшовши з табору та пройшовши: а) 4 км на захід і 3 км на південь;     б) 3 км на схід і 5 км на північ; в) 2 км на захід і 4 км на північ;       г) 2 км на схід. 1333.    Запишіть координати точок, зображених на рисунку 76. 1334.


Рівень А


Побудуйте систему координат, узявши одиничний відрізок завдовжки 1 см, і позначте точки:


1335.  4(2; 1); Я(-1; -3); ОТО; -2); Д5; 0); М(-5; 1); МЗ; -5). 1336. 4(4; -1), В(-Л; -1), С(5; -3), 0(5; 2), М(-2; 0), /У(0; 4).


1337.    Запишіть координати трьох точок, які: а)    належать осі абсцис; б)    належать осі ординат; в)    мають ординату 3; г)    мають абсцису -2.


1338.    Побудуйте точку 4(-3; 5) і точку, координатами якої є числа, протилежні відповідним координатам точки А.

1339.  Побудуйте точку С(-4; -1) і точку, координати якої дорівнюють модулям відповідних координат точки С.  

1340.   На координатній площині побудуйте кілька точок, які мають рівні абсциси й ординати. Чи лежать ці точки на одній прямій?  

1341.   На координатній площині побудуйте кілька точок, що мають ординату 4. Чи лежать ці точки на одній прямій? 1342.  На координатній площині накресліть трикутник КЬМ, якщо К(-3; -1), Д1;-1),М(0; 3). 1343. Побудуйте на координатній площині точки 4(5; 0), /5(4; 3), С(3; 4), ДО; 5), Е(-3; 4), К(-4; 3), Ц-5; 0), М(-4; -3), N(-3; -4), Р(0; -5), Д(3; -4), £(4; -3) та коло із центром у точці О радіусом 5 одиничних відрізків. Переконайтеся, що побудовані точки лежать на цьому колі.                                                                                          

Рівень Б

1344. На координатній площині проведіть пряму, що проходить через точки С(-2; 0) і Д4; 3). Позначте на цій прямій точки, абсциси яких дорівнюють -4; 0; 1. Запишіть координати одержаних точок.

1345. На координатній площині проведіть пряму, що проходить через точ 4 (-2; -3) і В(2; 5). Позначте на цій прямій точки з ординатами -1; 1; Запишіть координати одержаних точок.  

1346.  Дано координати трьох послідовних вершин прямокутника KLMN : K(-1,5;-2),L(-1,5; 1) i M(3; 1). а)    Накресліть цей прямокутник. б)    Запишіть координати точки N. в)    Знайдіть пепиметп і площу прямокутника.  

1347. Точки 4(3; -1) і В(-1; -1) — дві сусідні вершини квадрата АВСВ, ордин; та вершини С більша від ординати вершини В. а)    Накресліть квадрат АВСВ. б)    Запишіть координати точок С і О. в)    Знайдіть периметр і площу квадрата.   Позначте частину координатної площини, яку утворюють точки Р(х;у), якщо: 1348.   а)х>0,у>0;    б)х>0,у = 0;    в) х < 0, |у| < 1.   1349.   а)х = 0,у<0;    б)х<0,.у>0;    в) |х| < 1,у > 0.                                                                                      

Здогадайтеся

1350. Михайлик запросив Марійку грати в таку гру: з ящика із двома білими кулями й однією чорною витягається навмання дві кулі. Якщо кулі одного кольору, то перемагає Марійка, якщо різного — Михайлик. Чи є ця гра справедливою?            

                                                                       

Цікаві розповіді

З історії системи координат

Координати були потрібні астрономам і географам для визначення положення світил на небі й певних пунктів на Землі, для складання зоряних і географічних карт. Прямокутна система координат у вигляді квадратної сітки (палетки) була відома ще у стародавньому Єгипті, нею користувалися і художники доби Відродження. Ідея застосування координат у математиці належить вже згадуваному французькому математику Рене Декарту. На честь Декарта прямокутну систему координат називають ще прямокутною декартовою системою координаТ. Термін абсциса походить від латинського слова abscissus, що означає від>-різаний, відокремлений, а буквально перекладається як «відрізок» (на осі х). Слово ордината походить від латинського слова "упорядкований". Ці терміни в їх сучасному розумінні увів у кінці XVII ст. німецький учений Г. Лейбніц (1646 - 1716). Щоб підркеслити рівноправність понять абсциса й ордината, Г. Лейбніц застосував термін координати, що походить від латинських слів со — з, разом, і ardinatus — упорядкований. Цей термін означає «узяті в певній послідовності числа, що визначають положення точки на площині».                                                                         

Вправи для повторення

1351.    У шостому класі навчається 32 учні. За контрольну роботу 10 балів одержали 4 учні. Скільки відсотків учнів класу одержали 10 балів?

1352.    Токар може виготовити партію деталей за 8 год, а його учень таку ж партію — за 12 год. За який час виготовлять партію деталей токар і учень, працюючи разом?

1353.    Два трактори, працюючи разом, можуть виорати поле за 2 дні. За скільки днів зможе виорати це поле другий трактор, якщо перший може виорати його за 3 дні?

Математика 6 клас Галина Янченко .Василь Кравчук

Вислано читачами iнтернет-сайту


Онлайн-бібліотека з підручниками і книгами, тести з математики, завдання з математики 6 клас, календарне планування

1236084776 kr.jpg конспект уроку і опорний каркас                      
1236084776 kr.jpg презентація уроку 
1236084776 kr.jpg акселеративні методи та інтерактивні технології
1236084776 kr.jpg закриті вправи (тільки для використання вчителями)
1236084776 kr.jpg оцінювання 

Практика
1236084776 kr.jpg задачі та вправи,самоперевірка 
1236084776 kr.jpg практикуми, лабораторні, кейси
1236084776 kr.jpg рівень складності задач: звичайний, високий, олімпійський
1236084776 kr.jpg домашнє завдання 

Ілюстрації
1236084776 kr.jpg ілюстрації: відеокліпи, аудіо, фотографії, графіки, таблиці, комікси, мультимедіа
1236084776 kr.jpg реферати
1236084776 kr.jpg фішки для допитливих
1236084776 kr.jpg шпаргалки
1236084776 kr.jpg гумор, притчі, приколи, приказки, кросворди, цитати

Доповнення
1236084776 kr.jpg зовнішнє незалежне тестування (ЗНТ)
1236084776 kr.jpg підручники основні і допоміжні 
1236084776 kr.jpg тематичні свята, девізи 
1236084776 kr.jpg статті 
1236084776 kr.jpg національні особливості
1236084776 kr.jpg словник термінів                          
1236084776 kr.jpg інше 

Тільки для вчителів
1236084776 kr.jpg ідеальні уроки 
1236084776 kr.jpg календарний план на рік 
1236084776 kr.jpg методичні рекомендації 
1236084776 kr.jpg програми
1236084776 kr.jpg обговорення

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.