Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Метод наименьших квадратов

Гипермаркет знаний>>Информатика>>Информатика 11 класс>>Информатика: Метод наименьших квадратов


Метод наименьших квадратов

Что такое метод наименьших квадратов?

Сегодняшний наш урок будет посвящен изучению темы о методах наименьших квадратов. Что же это за метод? Давайте начнем с его определения.

Методом наименьших квадратов называют такой метод, при котором нахождение оптимальных параметров линейной регрессии, имеет в сумме квадратов регрессионных остатков минимальное количество ошибок.

В этом методе ключевым моментом выступает, минимизация евклидова расстояния
МНК

между вектором восстановленных значений зависимой переменной и вектором фактических значений зависимой переменной.

Для линейных экономических моделей метод наименьших квадратов является не только самым распространенным, но и наиболее простым и эффективным методом оценки данных параметров Уt.

Но даже при том, что этот метод принято считать наиболее эффективным, все же при его применении следует быть осторожными, так как построенные по методу наименьших квадратов модели, не всегда соответствуют требованиям к качеству их параметров и поэтому не всегда способны с точностью отображать все закономерности, участвующие в развитии процесса.

Ну а сейчас давайте более подробно попробуем рассмотреть процесс оценки параметров линейной эконометрической модели, используя метод наименьших квадратов.

В общем виде эта модель может иметь уравнение такого вида, как:


МНК

При оценке таких параметров, как a0 , a1 ,..., an, его исходными данными будет вектор, у которого значения зависимой переменной y = (y1 , y2 , ... , yT )', а также матрица значений независимых переменных:


МНК

если рассматривать первый столбец, то он состоит из единиц, которые соответствуют коэффициенту этой модели.

Метод наименьших квадратов свое название приобрел, благодаря принципу, которому должны удовлетворять оценки параметров, полученные на его основе. Притом, что касается оценки его параметров, то сумма квадратов ошибки данной модели должна быть минимальной.

Теперь давайте более наглядно метод наименьших квадратов рассмотрим на примере:

В таблице наведен перечень предприятий, которые выпускают один и тот же товар. Давайте рассмотрим функции издержек:


МНК

В этом случае мы с вами видим, что система нормальных уравнений предоставлена в таком виде:


МНК

Из этого следует, что:

а = - 5,79; b = 36,84.

Получаем уравнение регрессии:


МНК

В итоге мы видим, что общая сумма квадратов будет равна:


МНК

Из этого следует, что факторная сумма квадратов приобретает такой вид:


МНК

Ну и остаточная сумма квадратов выходит:


МНК

Приходим к такому выводу, что уравнение регрессии значимо и F факт больше F табл.

Дисперсионный анализ результатов регрессии


МНК

Использование методов наименьших квадратов

Возникает вполне закономерный вопрос, зачем нам нужен и где может быть использован метод наименьших квадратов? Ну, естественно, что в первую очередь МНК нашел свое применение в математике. А именно:

• Во-первых, он необходим в как, так и в теории вероятности, так и в математической статистике;
• Во-вторых, наибольшее распространение МНК получил при решении задач на фильтрацию, где необходимо отмежевать полезный сигнал от шума, который на него накладывается.
• В-третьих, МНК, применяют в математическом анализе для приближённого представления заданной функции более простыми функциями.
• В-четвертых, его применяют тогда, когда нужно решить систему уравнений, в которых количество неизвестных меньше, чем количество уравнений.