Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Сечение шара плоскостью

Гипермаркет знаний>>Математика>>Математика 11 класс>>Математика:Сечение шара плоскостью


Сечение шара плоскостью


Теорема 20.3. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.

Доказательство. Пусть 24-06-52.jpg — секущая плоскость и О — центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость 24-06-52.jpg и обозначим через О' основание этого перпендикуляра.


Сечение шара плоскостью
 
Пусть X — произвольная точка шара, принадлежащая плоскости 24-06-52.jpg. По теореме Пифагора 0X2 = 00'2+О'Х2. Так как ОХ не больше радиуса R шара, тоФормула, т. е. любая точка сечения шара плоскостью 24-06-52.jpg находится от точки О' на расстоянии, не большем Формула, следовательно, она принадлежит кругу с центром О' и радиусом Формула.

Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью 24-06-52.jpg есть круг с центром в точке О'. Теорема доказана.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы — большой окружностью.


Сечение шара плоскостью
 
Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?

Решение. Если радиус шара R (рис. 455), то радиус круга в сечении будет

Формула.

Отношение площади этого круга к площади большого круга равно


Формула



А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений


Видео по математике скачать, домашнее задание, учителям и школьникам на помощь онлайн



Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.