Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Степенные функции, их свойства и графики

Гипермаркет знаний>>Математика>>Математика 10 класс>> Степенные функции, их свойства и графики


§ 44. Степенные функции, их свойства и графики


Обычно степенными функциями называют функции вида у = хr, где r-любое действительное число. В этом параграфе мы ограничимся случаями рационального показателя r.

Целый ряд таких функций мы с вами уже изучили. Так, если r— натуральное число (r = п), то получаем функцию у = хп; графики и свойства таких функций вам известны из курса алгебры 7—9-го классов. На рис. 180 изображен график функции у =х1 (прямая), на рис. 181 изображен график функции у =хг (парабола), на рис. 182 изображен график функции у =х3 (кубическая парабола). График


График
степенной функции у = хп в случае четного п (п =4, 6, 8, ...) похож на параболу, а график степенной функции у = х" в случае нечетного п(п= 5, 7, 9,...) похож на кубическую параболу.

Если г = -п, то получаем функцию Задание  о таких функциях мы говорили в курсе алгебры 9-го класса. В случае четного п график имеет вид, изображенный на рис. 183; в случае нечетного п график имеет вид, изображенный на рис. 184.

Наконец, если г=0, т.е. речь идет о функции у=х°, то о ней и говорить неинтересно, поскольку это — функция у = 1, где A10650.jpg; график этой функции изображен на рис. 185.


График


Теперь познакомимся с функциями у = хг, где г положительное или отрицательное дробное число.

Рассмотрим в качестве примера функцию y=x2,5. Область ее определения — луч A10652.jpg Построим на этом луче графики функций у = х2 (ветвь параболы) и у=х3 (ветвь кубической параболы) — эти графики изображены на рис. 186. Обратите внимание: на интервале (0, 1) кубическая парабола располагается ниже, а на открытом луче A10653.jpg выше параболы.

График
Нетрудно убедиться в том, что график функции у =х2,5, проходит через точки (0; 0) и (1; 1), как и графики функций у = х2, у = х3. При остальных значениях аргумента х график функции у=х2,5 находится между графиками функций у=х2 и у=х3 (рис. 186). Почему? Смотрите:

1) Если О<х< 1, то:

Задание
2) Если х> 1, то:

Задание
Примерно так же обстоит дело для любой степенной функции вида Задание неправильная дробь (числитель больше знаменателя). Ее графиком является кривая, похожая на ветвь параболы. Чем больше показатель г, тем «круче» устремлена эта кривая вверх.


Свойства функции Функции
1) Задание
2)    не является ни четной, ни нечетной;
3)    возрастает на A10660.jpg
4)    не ограничена сверху, ограничена снизу;
5)    не имеет наибольшего значения; A10661.jpg
6)    непрерывна;
7) Задание
8)    выпукла вниз.
Рассмотрим степенную функцию A10663.jpg для случая, когда A10664.jpg правильная дробь A10665.jpg
Все рассмотренное в § 40 в отношении функции A10666.jpg или, что то же самое, A10667.jpg (ее график изображен на рис. 169) имеет место и по отношению к любой степенной функции вида Задание правильная дробь (числитель меньше знаменателя). График функции у = хг изображен на рис. 187.

График


Свойства функции Задание
1) A10659.jpg
2)    не является ни четной, ни нечетной;
3)    возрастает на A10660.jpg
4)    не ограничена сверху, ограничена снизу;
5)    не имеет наибольшего значения; A10661.jpg
6)    непрерывна;
7) A10662.jpg
8)    выпукла вверх.
Нам осталось рассмотреть степенную функцию вида A10671.jpg Область ее определения — открытый луч (0, + оо). Выше мы построили график степенной функции у = х-n, где п — натуральное число. При х > 0 график функции у =х-п пoхож на ветвь гиперболы (рис. 184). Точно так же обстоит дело для любой степенной функции вида A10672.jpg, график которой изображен на рис. 188. Отметим, что график данной функции имеет горизонтальную асимптоту у = 0 и вертикальную асимптоту х = 0.

График
Свойства функции A10674.jpg
1) A10675.jpg
2)    не является ни четной, ни нечетной;
3)    убывает на (0, + оо);
4)    не ограничена сверху, ограничена снизу;
5)    не имеет ни наибольшего, ни наименьшего значения;
6)    непрерывна;
7) A10676.jpg
8)    выпукла вниз.


Вы заметили, наверное, что мы пока ничего не сказали о свойстве дифференцируемости степенной функции. Начнем издалека.

Мы знаем, чему равна производная функции у =хn, где п — натуральное число:

Задание
Нетрудно найти производную степенной функции у = х-n, где n — натуральное число. Для этого надо переписать выражение х-n в виде A10678.jpg и воспользоваться правилом дифференцирования дроби:

Задание

Итак, для любого A10680.jpg справедлива формула

Задание
Формулы (1) и (2) можно объединить в одну:

Задание
где m — любое целое число.
Идем дальше. Мы знаем, что Задание  Эту формулу можно записать следующим образом:

Задание
И формула (3), и формула (4) являются частными случаями общего утверждения (которое мы приводим без доказательства).

Теорема
Например,

Задание
Нетрудно получить и соответствующую формулу для интегрирования степенной функции: если

Задание

В самом деле, Задание
Значит, функция Задание является первообразной для функции у = хг, а потому справедлива формула (5). Например,

Задание
Рассмотрим ряд примеров.
Пример 1. Найти наибольшее и наименьшее значения функции A10691.jpg на отрезке [1, 9]; б) на интервале (0, 4); в) на луче A10692.jpg


Решение. Нам нет необходимости строить график функции, можно воспользоваться тем, что она возрастает и, следовательно, свое наименьшее и наибольшее значения достигает соответственно в левом и правом концах заданного промежутка, если, разумеется, концы промежутка принадлежат самому промежутку.


Задание


б)    Здесь нет ни наименьшего, ни наибольшего значения функции, поскольку концы промежутка — точки 0 и 4 — интервалу (0, 4) не принадлежат.


Задание не существует.   


Пример 2. Найти наибольшее и наименьшее значения функции

Задание  на отрезке [1, 9].


Решение. Воспользуемся алгоритмом отыскания наибольшего и наименьшего значений непрерывной функции на отрезке (см. § 36).

1)    Имеем Задание
2)    Производная существует при всех х, значит, критических точек у функции нет, а стационарные найдем из условия у'=0. Имеем:

Задание
Отрезку [1,9] принадлежит лишь точка х = 4.
3)    Составим таблицу значений функции Задание включив в нее концы отрезка — точки x = 1 и x = 9 — и найденную стационарную точку х = 4:
Таблица

Таким образом,

Задание
Пример 3. Решить уравнение Задание
Решение. Нетрудно подобрать один корень этого уравнения: х = 8. В самом деле,

Задание
значит, при х=4 уравнение обращается в верное числовое равенство 4=4.
Так как степенная функция A10703.jpg возрастает, а линейная функция у = 12 - х убывает, то других корней у уравнения нет.

Ответ: х = 8.


Пример 4. Построить график функции

График
Решение. 1) Перейдем к вспомогательной системе координат с началом в точке (1; -2) — пунктирные прямые x = 1 и у = -2на рис. 189.
2) «Привяжем» функцию A10705.jpg к новой системе координат. Для этого выберем контрольные точки для функций Задание
но строить их будем не в старой, а в новой системе координат. Затем по этим точкам построим кривую того вида, какой представлен на рис. 188. Это и будет требуемый график (рис. 190).  
Пример 5. Составить уравнение касательной к 1 -графику функции: Задание в точке х = 1.
Решение. Напомним общий вид уравнения касательной:

Задание
Воспользуемся алгоритмом составления уравнения касательной (см. § 34).

Задание
4) Подставим найденные три числа: Задание в формулу (6). Получим:

Задание
4)    Подставим найденные три числа: Задание вформулу (6). Получим:

Задание
Ответ: Задание
Замечание. График функции A10715.jpg похож на ветвь гиперболы A10716.jpg оба графика имеют своими асимптотами оси координат, оба графика проходят через точку (1; 1). Но их поведение в точке (1; 1) различное, у них, как мы увидели при решении примера 5, разные касательные в этой точке (см. рис. 191,192).


Пример 6. Найти площадь фигуры, ограниченной линиями

График
Решение. Фигура, площадь которой требуется вычислить, изображена на рис. 193. Имеем (см. § 38):

Задание
Ответ: S = 12.


А.Г. Мордкович Алгебра 10 класс




Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.