Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Теорема Пифагора. Полные уроки

Гипермаркет знаний>>Математика>>Математика 8 класс. Полные уроки>>Геометрия: Теорема Пифагора. Полные уроки

Содержание

Тема урока

Теорема Пифагора

Цели урока

• Познакомиться школьников с теоремой Пифагора;
• Сформулировать и доказать теорему Пифагора;
• Познакомить школьников с разными методами применения этой теоремы при решении задач;
• Формировать навыки использования полученных знаний на практике;
• Развивать внимание учащихся, самостоятельность и интерес к геометрии;
• Воспитывать культуру математической речи.

Задачи урока

• Научиться использовать свойства фигур при выполнении заданий.
• Уметь применять теорему Пифагора во время решения задач.

План урока

• Краткие биографические сведения.
• Теорема и ее доказательство.
• Интересные факты.
• Решение задач.
• Домашнее задание.

Краткие биографические сведения о Пифагоре


пифагор

На жаль, Пифагор не оставил никаких сочинений о своей биографии, поэтому все сведения об этом великом философе и знаменитом математике мы можем узнать только благодаря воспоминаниям его последователей, да и то не всегда справедливых. Поэтому об этом человеке ходит много легенд. Но правда заключается в том, что Пифагор был великим эллинским мудрецом, философом и талантливым математиком.

По недостоверным сведениям, великий мудрец и гениальный ученый Пифагор родился в далеко не бедной семье, на острове Самосее, приблизительно в 570 году до н.э.

Появление на свет гениального ребенка предрекла Пафия. Поэтому будущий светила получил свое имя Пифагор, которое обозначает, что это именно тот, о ком объявила Пафия. Она предсказала, что рожденный младенец в будущем принесет немало пользы и добра людям.

Новорожденный был безумно красив, а современем порадовал окружающих своими выдающимися способностями. А так как юное дарование коротало свои дни среди мудрых старцев, то в будущем это принесло свои плоды. Вот так благодаря Гермодаманту Пифагор полюбил музыку, а Ферекид направил ум ребенка к логосу. После жизни в Самосее Пифагор отпправился в Милеет, где произошло знакомство еще с одним ученым - Фалесом.

Пифагор познакомился со знаниями всех известных по тем временам мудрецов, так как был допущен к обучению и познанию всех таинств, которые были другим запрещены. Он старался докопаться до истины и впитать все накопленные человечеством знания.

После двадцати двух лет пребывания в Египте, Пифагор перебрался в Вавилон, где продолжил свое общение с различными мудрецами и магами. Вернувшись в конце своей жизни в Самиос, он был признан одним из мудрейших людей того времени.

Теорема Пифагора


пифагор

Даже человек, которому пока не довелось изучать эту теорему, наверняка слышал высказывание о «пифагоровых штанах». Особенность этой теоремы в том, что она стала одной из ключевых теорем евклидовой геометрии. Она позволяет легко найти и установить соответствие между сторонами прямоугольного треугольника.

Теорема Пифагора запомнилась каждому школьнику не только высказыванием: «пифагоровы штаны на все стороны равны», а своей простотой и значимостью. И на первый взгляд эта теорема хотя и кажется простой, но имеет большое значение, так как в геометрии она применяется фактически на каждом шагу.



Теорема Пифагора насчитывает большое количество разных доказательств и, наверное, является единственной теоремой, которая имеет такое огромное число доказательств. Такое разнообразие подчеркивает безграничную значимость этой теоремы

В теореме Пифагора присутствуют геометрические, алгебраические, механические и другие доказательства.

Об открытии теоремы Пифагором сложено много разных легенд. Но, несмотря на все это, имя Пифагора навеки вошло в историю геометрии и прочно слилось с теоремой Пифагора. Ведь этот гениальный математик первым представит доказательство теоремы, которая носит его имя.


пифагор

Формулировки теоремы

Существуют несколько формулировок теоремы Пифагора.

Евклидова теорема говорит нам, что квадрат стороны прямоугольного треугольника, проведенный над его прямым углом, равняется квадратам на сторонах, заключающих прямой угол.


пифагор



Задание: Найдите различные формулировки теоремы Пифагора. Находите ли вы в них какое-то различие?

Упрощенное доказательство Евклида

Независимо от того, мы берем метод разложения или доказательство Евклида, можно использовать любое расположение квадратов. В некоторых случаях при этом можно достичь небольших упрощений.


пифагор

Возьмем квадрат, который построен на одном из катетов и имеет тоже расположение, что и треугольник. Мы видим, что продолжение стороны, противоположной катету этого квадрата проходит через вершину квадрата, который построен на гипотенузе.

Доказательство теоремы выглядит довольно просто, так как будет достаточно просто сравнить площади фигур с площадью треугольника. И мы видим, что S треугольника равна ½ площади квадрата, а также ½ S прямоугольника.

Самое простое доказательство


пифагор

Алгебраическое доказательство

К алгебраическому доказательству теоремы Пифагора относятся элементарные методы, которые присутствуют в алгебре. Это способы решения уравнений в сочетании со способом замены переменных.

Давайте рассмотрим это доказательство более детально. И так, у нас есть прямоугольник АВС, у которого прямой угол – С.

Проведите с этого угла высоту CD.

Согласно определения косинуса угла мы получим:

соsА=AD/AC=AC/AB. Отсюда AB*AD=AC2.

И соответственно:

соsВ = BD/BC=BC/AB.

Отсюда AB*BD=ВС2.

Теперь сложим эти равенства почленно и увидим, что: AD+DB=AB,

В итоге:

АС2+ВС2=АВ(AD + DB)=АВ2.

Вот и все, теорема доказана.


пифагор

Интересный факт

Теорему Пифагора ученые «доказали» с помощью мультиков. Группа единомышленников из института им. Стеклова получила премию за оригинальный математический проект, который они разработали для школьников и учителей. Они создали мини уроки по математике, которые этот скучный предмет превратили в очень интересный и познавательный. Свои необычные этюды молодые ученые выпустили на дисках и выложили в Интернете на всеобщее обозрение.


Вопросы

1. Кто такой Пифагор?
2. О чем гласит теорема Пифагора?
3. Какие существуют формулировки теоремы Пифагора?
4. При решении, каких задач применяется теорема Пифагора?
5. Где теорема Пифагора нашла практическое применение?
6. Какие вы знаете способы использования теоремы Пифагора?

Задачи с применением теоремы Пифагора


пифагор

Используя знания теоремы Пифагора, попробуйте решить следующие задачи:

• Из туристической базы, одновременно, вышли две группы туристов. Первая группа пошла на юг и прошла семь километров, а вторая свернула на запад и прошла девять километров. Используя знания теоремы, найдите расстояние между группами туристов.

• Если в прямоугольном треугольнике его катет равен 15 см, а гипотенуза равняется 16 см, то чему будет равен второй катет?

• Чему будет равна площадь трапеции, когда ее большое основание равно 24 см, меньшее – 16, а большая диагональ прямоугольной трапеции равна 26 см?


пифагор

Домашнее задание

Оформите в виде небольшого доклада несколько доказательств теоремы Пифагора, которые вам понятны и решите задачи.

1. Найдите диагональ прямоугольного треугольника, при условии, что стороны его равны 8 см и 32 см.

2. Найдите медиану треугольника, которая проведена к основанию, если в равнобедренном треугольнике периметр равен 38 см, а его боковая сторона равняется 15 см.

3. У треугольника стороны равны 10см, 6 см и 9 см. Попробуйте определить, является ли этот треугольник прямоугольным?

Предмети > Математика > Математика 8 класс