KNOWLEDGE HYPERMARKET


Четвертичный период (антропоген): Великое оледенение

Гипермаркет знаний>>Естествознание>>Естествознание 10 класс>> Четвертичный период (антропоген): Великое оледенение. Ледниковая теория. Перигляциальные сообщества и мамонтовая фауна


                                  Четвертичный период (антропоген): Великое оледенение. Ледниковая теория.

                                                        Перигляциальные сообщества и мамонтовая фауна.

Четвертичный период, или антропоген – самый последний отрезок кайнозоя, начавшийся около 2 млн лет назад. Наиболее существенная черта этого времени – существование в высоких широтах нашей планеты покровных оледенений; во время ледниковых эпох они распространялись на юг до 40 х широт (рисунок 58), а во время межледниковий – «съеживались» до примерно нынешнего состояния (когда ими покрыта лишь Антарктида в Южном полушарии и Гренландия – в Северном). Разделение четвертичного периода на плейстоцен («Великое оледенение») и начавшийся 10 12 тыс лет назад голоцен (время, в которое мы живем) в значительной степени условно: часто говорят, что на самом деле голоцен – это просто напросто одно из плейстоценовых межледниковий, причем даже не самое крупное.
 
Оледенение Северного полушария

РИСУНОК 58. Оледенение Северного полушария в наши дни (а) и в последнюю ледниковую эпоху (б).

Вероятно всем вам доводилось встречать где нибудь на краях полей и лесных опушках окатанные гранитные валуны, иногда с характерной «штриховкой» – хотя никаких скальных выходов в окрестностях нет и в помине. По нынешнему времени любой школьник знает, что эти эрратические (т.е. блуждающие) валуны, часто достигающие размеров танка, были перенесены от мест выхода соответствующих скальных пород движением древнего ледника, покрывавшего некогда обширные территории Европы и Северной Америки. Однако в 1837 году, когда швейцарский геолог Л. Агассис выдвинул свою теорию существования в истории Земли ледникового периода, основываясь именно на сходстве между эрратическими валунами равнинной Европы и теми окатанными штрихованными булыжниками, что на наших глазах вытаивают из под краев альпийских ледников, его только что не подняли на смех. Дело в том, что в те времена не только широкая публика, но и геологи не сомневались, что все эти валуны разносились чудовищными потоками воды и грязи, связанными с библейским Всемирным потопом.

Здесь необходимо сделать одно замечание. Читатель современных учебников и популярных книжек зачастую выносит из них впечатление, будто все геологи дилювиалисты, считавшие эрратические валуны и другие ледниковые (как это теперь нам известно) отложения «наносами» (дилювием) Всемирнного потопа, были либо недоумками, либо религиозными мракобесами. Вот уж неправда! Да, конечно, Церковь освящала своим авторитетом теорию потопа. Да, конечно, выдающийся британский геолог У. Бакленд в торжественной лекции, открывавшей его курс в Оксфорде и названной «Объяснение связи между геологией и религией», выражал убежденность в том, что главная цель геологической науки – «...Подтвердить данные религии и показать, что известные ей факты согласуются с описанием сотворения Мира и Потопа, которые мы находим в заповедях Моисея». Однако в том то и дело, что аргументация дилювиалистов была при этом именно научной, а не теологической (основанной на комментировании священных текстов).

Так, в 1821 году Бакленд исследовал найденные в одной из йоркширских пещер скелеты гигантских гиен, а также разрозненные кости 23 вымерших видов млекопитающих (львов, слонов, бегемотов и пр.), и пришел к выводу, что пещера была гиеньим логовом, затопленным Всемирным потопом. Положение костей и их соотношение с перекрывающим их неслоистым суглинком свидетельствовало, по его мнению, о том, что допотопные звери действительно утонули; изучив же сталагмиты, выросшие поверх осадка, он установил, что возраст потопа – пять шесть тысяч лет, что замечательно совпадает с библейскими «датировками». Заключения Бакленда относительно конкретного седиментогенеза  впоследствии оказались ошибочными, однако методологически эти его построения совершенно корректны. Или другой пример. Предполагалось, что транспортировку эрратических валунов на сотни километров обеспечивали гигантские волны; они возникали лишь при Потопе, и в настоящее время ничего похожего в природе не наблюдается. Возможная динамика этих волн – их называли «волнами трансляции» – стала предметом тщательного анализа; гидродинамические расчеты, выполненные математиками Кембриджского университета, дали точные характеристики глубин и скоростей течения водных масс потопа . Кроме того, в 1833 году Ч. Лайелль модифицировал классическую теорию: в рамках его дрифтовой гипотезы эрратические валуны транспортировались не текущей водой, а дрейфующими льдами, и отлагались по мере их таяния: к тому времени полярным исследователям уже было известно, что айсберги иногда содержат вмерзшие в лед валуны.

Однако ни лайелева гипотеза, ни классическая концепция неспособны были объяснить целый ряд фактов. Так, из гипсометрического (высотного) распределения «дрифтовых» наносов следовало, что уровень Океана некогда повышался на 1,5 км. Но откуда же бралась вся эта вода и куда она подевалась потом? Тут уж дилювиалистам приходилось прибегать к совершенно фантастическим допущениям: массы воды изливались у них из колоссальных подземных резервуаров, а потом столь же внезапно поглощались неведомыми пустотами; гигантская комета задевала земную поверхность, порождая приливные волны, перехлестывавшие через высочайшие горы и т.п. Неудивительно, что гляциальная теория Агассиса, наглядно демонстрировавшая, каким именно образом эрратические валуны, морены (несортированные массы гравия, камней и глины) и прочие «следы потопа» на наших глазах отлагаются горными ледниками, через некоторое время одержала решительную победу; ее приняли даже такие оппоненты Агассиса, как упомянутые выше Лайелль и Бакленд (что в науке случается не так уж часто). Более того: иногда шутят, что перешедший на гляциалистские позиции Бакленд с его гигантским научным авторитетом сыграл для распространения ледниковой теории примерно такую же роль, как император Константин – для христианства.

Путем наблюдения за современными гляциальными процессами установлено, что ледники образуются из снега в местах, где он скапливается в количествах, превышающих летнее таяние. Снег слеживается в плотный фирн, а когда толщина снежного пласта достигает тридцати метров, нижние его слои под собственным весом начинают обращаться в чистый лед. Лед обладает замечательным свойством: под давлением он начинает «течь», создавая водяную «смазку», понижающую трение (благодаря чему мы можем кататься на коньках). Дальнейшее увеличение толщины снежно ледяных масс ведет к тому, что они начинают медленное движение, которое будет тем быстрее, чем толще ледник (и, соответственно, чем выше создаваемое им давление). Движущийся лед способен не только захватывать свободно лежащие обломки и мелкозем, но и отрывать целые глыбы коренных пород. Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняют роль гигантского напильника, который сглаживает и шлифует (а местами, наоборот, царапает) каменные поверхности, служащие ледниковым ложем. При этом подо льдом формируются своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки – основная, или донная морена.

Размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега и той его долей, что успевает растаять и испариться за теплые сезоны. При потеплении климата края ледников отступают на новые – равновесные – рубежи. Концевые части ледниковых языков «мертвеют», их лед перестает двигаться и постепенно стаивает. Включенные ранее в «мертвый» лед валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника – конечную морену; другая часть обломочного материала (в основном песок) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных равнин (зандров). Со временем геологи выяснили, что подобные потоки практически так же действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности остаются – поверх вытаявшей донной морены – хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины, вытянутые на манер железнодорожных насыпей вдоль оси ледника (и перпендикулярно конечным моренам) озы и неправильной формы камы. Замечательно четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения маркирована здесь конечноморенным валом с высотами до пятидесяти метров, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой «Великой китайской стены» ледниковые отложения представлены в основном мореной, а к югу от нее – плащом флювиогляциальных песков и галечников.

Поначалу геологи полагали, что покровное оледенение возникло на Земле лишь однажды (как и Потоп): ледник надвинулся, а затем отступил в свое нынешнее положение, оставив на память о себе все эти моренные гряды, камовые холмы и зандровые поля. Впоследствии, однако, обнаружили свидетельства многократности оледенений: заключенные между разновозрастными слоями морены слои торфа и даже гумусированные почвенные горизонты. Для образования почвы подобного рода необходимы достаточно теплый климат и обильная растительность – значит, холодные ледниковые эпохи (когда отлагались морены) перемежались с теплыми межледниковьями. В 1909 году А. Пенк и А. Брюкнер установили, что изученные ими древние галечные террасы с бортов альпийских речных долин аккумулировались в ледниковые эпохи (когда интенсивное морозное выветривание и отсутствие растительности ускоряли эрозию), а в теплые межледниковья начинался их размыв. Они выделили для Центральной Европы четыре ледниковые эпохи, названные по соответствующим альпийским речкам – гюнц, миндель, рисс и вюрм. Впоследствии сходная последовательность плейстоценовых событий была установлена и для остальных территорий Северного полушария: в Восточной Европе различают окское (лихвинское), днепровское, московское и валдайское оледенения, в Северной Америке – небраскское, канзасское, иллинойсское и висконсинское.

Итак, подтвердив и развив теорию Агассиса, геологи оказались перед лицом проблемы – в чем же причина оледенений? Что вызывало рост ледниковых покровов прошлого, и почему, распространившись почти на треть суши, они вдруг начинали отступать? «Астрономические» гипотезы усматривали причину этих изменений в периодическом сокращении количества тепла, поступающего на Землю от Солнца. Другая группа гипотез акцентировала внимание на том, что оледенение – лишь одно из звеньев глобальной климатической системы, и система «ледниковый щит – океан – атмосфера» работает как единая гигантская машина; суть дела, заключали они, не в количестве тепла, поступающем на Землю, а в том, насколько равномерно это тепло распределено по поверхности планеты.

Солярная гипотеза, предполагающая периодические падения светимости Солнца, не имеет ныне сторонников: согласно мнению астрофизиков, звезды спектрального класса G 2, к которому относится наше Солнце, к подобным глупым шуткам совершенно не склонны. Зато весьма популярна теория астронома М. Миланковича (1924), связывающая оледенения с изменениями летней инсоляции (поступления солнечной радиации) в высоких широтах обеих полушарий, что, в свою очередь, обусловлено циклическими изменениям трех параметров орбитального движения Земли вокруг Солнца (вариациями наклона земной оси и пр.). Сделав поправки на эффекты менявшегося альбедо (отражательной способности земной поверхности), он рассчитал сдвиги в географическом положении границ ледниковых покровов за последний миллион лет, которые неплохо совпали с периодизацией европейских оледенений. Как на инсоляционных кривых Миланковича, так и на палеоклиматическом графике Пенка и Брюкнера ледниковые эпохи запечатлелись в виде коротких резких пульсаций, отделенных друг от друга длинными интервалами, и при этом «Великое межледниковье» (между минделем и риссом) занимает на графике то же место, что и предсказанный Миланковичем длительный теплый интервал (рисунок 59). Впоследствии картина оказалась гораздо более сложной, чем это представлялось в тридцатые сороковые годы, однако ныне существование 100 000 летних климатических циклов, порождаемых орбитальными возмущениями, имеет вполне солидное обоснование.
 
Проверка теории Миланковича

ИСУНОК 59. Проверка теории Миланковича: сопоставление климатической истории Европы (вверху) с инсоляционными кривыми Миланковича, рассчитанными для 55, 60 и 65( (внизу).

Теория Миланковича (в ее современных вариантах) удовлетворительно описывает динамику похолоданий и потеплений внутри ледникового периода, однако, к сожалению, не отвечает на вопрос о наступлении самого этого периода: вполне очевидно, что вся эта астрономическая циклика была точно такой же и в предшествующие плейстоцену эпохи, но никаких оледенений при этом не порождала. Поэтому с середины 50 х годов стал расти интерес к «земным» гипотезам оледенений, переносящим акцент на динамические взаимодействия в системе «оледенение – океан – атмосфера»; мы уже упоминали об «обратных парниковых эффектах», порождаемых изменениями атмосферного соотношения CO2/O2, и о работе морских течений при различном расположении материков.

Одной из самых интересных представляется гипотеза климатологов М. Юинга и У. Донна (1956). Задавшись вопросом – а почему оледенение не возникает сейчас, когда температурные условия Арктики вроде бы вполне тому благоприятствуют, – они сочли это следствием дефицита осадков . Главный тезис их гипотезы: решающее условие возникновения оледенения в Арктике – усиление притока несущих влагу воздушных масс и усиление снегопадов; от этого ледник начинает нарастать, альбедо увеличивается, температура падает... ну, дальше – ясно. Вопрос: что же за фактор повышал влажность в арктических широтах? Ответ: освобождение Ледовитого океана от его ледового панциря в результате усиления притока теплой воды из Северной Атлантики. При отсутствии покрова морских льдов этот океан должен становиться мощнейшим испарителем, воздух над ним – «заряжаться» водяным паром, а интенсивность снегопадов на окружающей сушей – резко возрастать; рост альбедо доводит падение температуры до ледниковой эпохи. А вот дальше – самое интересное; в некоторый момент похолодание достигает той точки, когда Ледовитый океан вновь замерзает, и тогда начинается дегляциация: потеряв главный источник атмосферного питания, ледниковые покровы начинают «съеживаться». Ледник тает, и при этом уровень океана повышается, ветви теплого Северо Атлантического течения вновь прорываются в Арктику, растапливают ее морские льды – и цикл начинается по новой.

Существование этой парадоксальной автоколебательной системы, в которой оледенение порождается потеплением, а дегляциация – похолоданием, нашло недавно косвенное подтверждение при изучении донных отложений Атлантики: оказалось, что в плейстоцене Гольфстрим периодически исчезал; при этом выяснилось, что усиление Гольфстрима действительно совпадает с периодами похолоданий, и наоборот. Вообще один из главных вопросов, на которые приходится отвечать «земным» гипотезам (подразумевающим примерное постоянство инсоляционного баланса планеты) – каким образом прекращается разрастание ледника, процесс, который по идее должен идти с положительной обратной связью? Ведь рост ледника приводит (через увеличение альбедо) к падению температуры, что еще увеличивает ледник – и так до тех пор, пока льдом не покроется вся планета... Один из наиболее убедительных ответов состоит в том, что по достижении ледником некого порогового размера над ним (именно из за высокого альбедо) возникает постоянно действующий антициклон (область высокого атмосферного давления), который усиливается по мере роста ледника и в конце концов лишает его «питания» – осадков. Таким образом, климат перигляциальных (окружающих ледник) территорий должен быть холодным и сухим – что полностью подтверждается палеонтологическими данными. В этих ландшафтах складываются весьма специфическая фаунистическая группировка с сочетанием криофильных (холодолюбивых) и ксерофильных (сухолюбивых) элементов, которую А.Я. Тугаринов (1929) назвал тундростепной; типично тундровые (влаголюбивые) элементы встречаются здесь лишь близ водотоков.

Сейчас группировки, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей – островков среди таежного и лесотундрового ландшафта, приуроченных к южным склонам гор северо восточной Сибири и Аляски, а также в холодных засушливых высокогорьях Центральной Азии (здесь их называют «пастбищем яков»). Реликтовые степи, так же как и тундра, представляют собой безлесые сериальные стадии к хвойным таежным климаксам – соответственно, ксеро– и гидросерию; соотношение площадей, занимаемых в ареале сукцессионной системы сообществами ксеро– и гидросериального ряда, определяется климатической ситуацией. В перигляциальном ландшафте, где вся вода вымерзает на массе ледника (как в морозилке холодильника) и ситуация складывается фактически аридная, доминируют криоксерофильные тундростепи, а настоящие тундры существуют лишь в виде приводных сообществ. Когда же ледниковая эпоха заканчивается и наступает межледниковье, ситуация меняется на обратную. Ледник тает, высвобождая массы воды, и доминировать на осовобождающейся ото льда территории начинают сообщества гидроряда (тундра – это в некотором смысле чудовищно разросшееся таежное моховое болото), тундростепи же съеживаются до крохотных островков «реликтовых степей» на сухих прогреваемых южных склонах.

Тундростепь отличалась тем, что травяной ярус ее формировали в основном не мхи (как в тундре), а злаки; здесь складывался крайне криофильный вариант уже знакомого нам (по главе 13) травяного биома с его высокой биомассой пастбищных копытных и хищников – мамонтовой фауной. В ее составе были причудливо смешаны виды, приуроченные ныне к тундре (северный олень, овцебык, леминги), к степям (сайгак, лошадь, верблюд, бизон, суслики), а также виды, характерные лишь для этого сообщества и исчезнувшие вместе с ним (мамонт, шерстистый носорог, саблезубый тигр – смилодон, гигантская гиена – рисунок 60). Исчезновение мамонтовой фауны, произошедшее в начале голоцена, одни исследователи связывают с климатическими изменениями, другие же считают этих животных жертвами человека («охотников на мамонтов»). Сторонники гипотезы «антропогенного вымирания» резонно указывают, что все предыдущие межледниковья, когда еще не было человека, криофильная мамонтовая фауна пережила вполне спокойно. Сторонники гипотезы «климатических воздействий» – опять таки резонно – возражают, что голоценовое вымирание было наиболее масштабным не в относительно густо заселенной Евразии, а в практически безлюдной в те времена Северной Америке (человек проник сюда лишь около 10 12 тысяч лет назад из Азии через Берингов пролив); на прародине же человечества – в африканских саваннах – никаких вымираний вообще не было. Кроме того, вымирание захватило не только крупных травоядных и хищников, но и целую кучу маммальной мелочи, которая никак не могла быть для кроманьонцев ни добычей, ни врагами, подлежащими целенаправленному уничтожению.
 
Вымершие представители мамонтовой фауны

РИСУНОК 60. Вымершие представители мамонтовой фауны: (а) – шерстистый носорог, (б) – гигантская саблезубая кошка смилодон.

Представляется, что наиболее близок к истине В.В. Жерихин (1993): «Каждый тип травяного биома производен от вполне определенной сукцессионной системы с лесным климаксом [в случае тундростепи – от тайги: К.Е.]. При вторичном сильном сокращении площади травяных сообществ они могут полностью утратить комплекс [поддерживающих их] крупных травоядных, а тем самым и эндогенную стабильность. В этом случае они могут вновь приобрести статус сериальных. Ярким примером могут служить современные реликтовые тундростепи, сохранившиеся в таежных сукцессионных системах после полного исчезновения тундростепного биома.» В момент таяния ледника и резкого увлажнения климата расширяются моховые тундры и сокращаются злаковые тундростепи, служащие пастбищем для мамонтовой фауны. Дополнительные неприятности для популяций этих животных создает то, что тундростепной ландшафт оказывается «нарезанным» на «острова»: и из теоретической экологии, и из современной практики заповедного дела известно, что для крупных животных несколько мелких резерватов хуже одного крупного (равного им по площади). Вот в этих то, кризисных, условиях человек мог нанести мамонтовой фауне последний удар: выборочно уничтожая крупных копытных, он значительно ускорил превращение тундростепей в лесные сообщества – а дальше процесс этот пошел неостановимо, с положительной обратной связью, пока не исчез весь этот фаунистический комплекс (хотя часть его сохраняется ныне в фауне тундр и степей). Отметим, что дольше всего мамонт выжил на острове Врангеля (открытый недавно карликовый подвид, около 1,5 м в холке, вымер 5 тыс. лет назад – против 10 12 тыс. лет на континенте), где и поныне широко распространены реликтовые степи.

Самое же интересное – что итоговое воздействие катастрофических (по любым меркам) плейстоценовых оледенений на биоту Северного полушария оказалось совершенно ничтожным. Да, вымерло некоторое количество млекопитающих из мамонтовой фауны, но во первых темпы этого вымирания не превышают средних по кайнозою, а во вторых, как мы теперь знаем, мамонтовая фауна вымерла скорее в результате прекращения оледенения. Известен лишь один вымерший вид четвертичных насекомых (если не считать гигантского кожного овода, паразитировавший на мамонте, и нескольких видов североамериканских жуков навозников – те исчезли вместе со своими хозяевами и прокормителями); что же касается растений, то они, похоже, не пострадали вовсе. Создается отчетливое впечатление, что в плейстоцене менялось лишь географическое распространение экосистем (широколиственные леса временно отступали к югу, а на севере изменялось соотношение площадей, занятых сообществами гидро– и ксеросериального ряда) и отдельных видов (в перигляциальных сообществах Европы появлялись жуки, ограниченные ныне степями Якутии и Тибетом) . Все это лишний раз свидетельствует о том, что экосистемы в норме обладают колоссальной устойчивостью, и разрушить их внешними воздействиями – даже катастрофическими – практически невозможно. Особенно замечательно плейстоценовая ситуация смотрится на фоне «тихих» внутрисистемных кризисов вроде среднемеловой ангиоспермизации – заведомо не связанной ни с какими импактами и драматическими перестройками климата, но вызвавшей обвальные вымирания в наземных и пресноводных сообществах.

С другой стороны, влияние плейстоценовых оледенений на климат планеты отнюдь не ограничивалось высокими ее широтами. Разрастание ледниковых щитов близ полюса тут же аукалось на экваторе невиданным иссушением тропического пояса: установлено, что дождевые тропические леса Южной Америки периодически съеживались до нескольких десятков крохотных пятачков "резерватов" в среднем течении Амазонки, а всю эту территорию занимали сухие саванны. Более того: есть серьезные основания полагать, что пустыни наиболее распространенного ныне на Земле средиземноморского типа  возникли лишь в плейстоцене. Если пустыни берегового и центральноазиатского типа, грубо говоря, являются пустынями всегда, то средиземноморские пустыни становятся таковыми временно, в зависимости от глобальной климатической обстановки, т.е. от взаимодействий в системе «оледенение – атмосфера – океан». Например, иссушение Сахары (наступление песков на саванну) идет буквально на наших глазах: первые европейские путешественники застали озеро Чад настоящим внутренним морем, а в реках нагорья Тибести, что в самом центре Сахары, еще в 20 е годы нашего века жили крокодилы.
 
Климат последнего тысячелетия

РИСУНОК 61. Климат последнего тысячелетия.

Многие из этих климатических изменений повторялись «в миниатюре» на памяти человечества. На рисунке 61 представлена кривая зимних температур в Европе за последнее тысячелетие. Во время так называемого «Малого ледникового периода» (1450 1850 гг) ледники повсеместно наступали, и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его ныне не бывает). Во время же предшествовавшего тому Атлантического оптимума (900 1300 гг) ледники сократились, и климат был заметно мягче нынешнего (вспомните: именно в эти времена викинги назвали Гренландию «Зеленой страной»); следствием потепления в высоких широтах стало увеличение количества осадков, выпадающих в аридном поясе.

Итак, на Севере стало тепло и, как писано в одном хорошем романе о викингах, «наступили времена изобилия и достатка, когда собирался такой прекрасный урожай ржи, а улов сельди был настолько велик, что большинство людей легко могли прокормить себя [что в Средневековье случалось нечасто – К.Е.]». Итог этого «изобилия и достатка» – норманская экспансия в Европе: «датская дань»  в Англии, варяжские дружины при всех состоятельных государях, колонизация Исландии и Гренландии, плавания в Америку. То же самое – на Юге, где стало влажно, пустыня обратилась в степь, и такое же «изобилие и достаток» посетило кочевые скотоводческие народы Центральной Азии; итог – «Монгольское нашествие» от Китая до Адриатики. На это же время приходится и расцвет городских цивилизаций в африканских саваннах – Канем, Гао, Гана, Мали, Ифе... О климатических воздействиях на судьбы человеческих цивилизаций можно говорить много, однако тут я уже явно начинаю отбивать хлеб у историков; как раз в такие моменты Шахерезада «прекращала дозволенные ей речи» – и была совершенно права.



История Земли и жизни на ней. Еськов К.Ю., Экспериментальное учебное пособие для старших классов., М.: МИРОС, 1999.



Содержание урока
1236084776 kr.jpg конспект урока
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.