KNOWLEDGE HYPERMARKET



2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Електромагнітне випромінювання різних діапазонів довжин хвиль. Рентгенівські промені. Праці Івана Пулюя

Гіпермаркет Знань>>Фізика і астрономія>>Фізика 11 клас>> Фізика: Електромагнітне випромінювання різних діапазонів довжин хвиль. Рентгенівські промені. Праці Івана Пулюя


ЕЛЕКТРОМАГНІТНЕ ВИПРОМІНЮВАННЯ РІЗНИХ ДІАПАЗОНІВ ДОВЖИН ХВИЛЬ ТА ЗАСТОСУВАННЯ РІЗНИХ ВИДІВ ВИПРОМІНЮВАНЬ. РЕНТГЕНІВСЬКІ ПРОМЕНІ. ПРАЦІ ІВАНА ПУЛЮЯ


ШКАЛА ЕЛЕКТРОМАГНІТНИХ ВИПРОМІНЮВАНЬ

У попередніх параграфах з'ясовано, що джерелом електромагнітних хвиль може бути електрично заряджена частинка, якщо вона рухається прискорено. Такий рух з прискоренням, тривалий у часі, можливий тоді, коли частинка здійснює коливальний рух, збуджуючи змінне електромагнітне поле, яке поширюється у просторі як електромагнітна хвиля.

Дослідженнями, що проводилися вченими протягом тривалого часу, встановлено, що в природі немає законів, які б обмежували частоту коливань заряджених частинок, а отже, і довжину хвилі, яка випромінюється. Не буває найменшої чи найбільшої довжини хвилі. Може лише йтися про певний діапазон хвиль, виявлених і вивчених за допомогою сучасних засобів дослідження.

Для наочного уявлення про різноманітність довжин електромагнітних хвиль складено шкалу електромагнітних хвиль. Один із варіантів такої шкали наведено на мал. 4.77.

30190-2.JPG

Вона охоплює діапазон електромагнітних хвиль від 10і' до 10~13 м. Оскільки цей діапазон дуже великий, то шкалу побудовано так, що кожна її поділка відповідає значенню десяткового логарифма відповідної довжини хвилі чи її частоти. Таку шкалу за способом побудови називають логарифмічною.

Усю шкалу електромагнітних хвиль поділено на умовні діапазони: низькочастотні хвилі, радіохвилі, інфрачервоне випромінювання, видиме випромінювання (світло), ультрафіолетове випромінювання, рентгенівське випромінювання та гамма-випромінювання (у-промені). Такий поділ зумовлений тим, що прискорення заряджених частинок може відбуватися в різних структурних системах фізичних тіл, що визначає їхню частоту. Якщо радіохвилі породжуються електромагнітними коливаннями в коливальному контурі, який має цілком певні ємність та індуктивність, то у-промені з'являються внаслідок певних змін у ядрах атомів.

Неоднакова і взаємодія електромагнітних хвиль із речовиною. Якщо видиме світло цілком поглинається тонким шаром темного паперу, то рентгенівське випромінювання може проникати навіть крізь досить товсті шари металу. У зв'язку з цим і в просторі електромагнітні хвилі поширюються по-різному. У радіотехніці (науці про використання електромагнітних хвиль для зв'язку на великих відстанях) діапазон радіохвиль поділяють на довгі, середні, короткі та ультракороткі. І це також пов'язано з особливостями їх поширення  в просторі та взаємодією з речовиною.

Властивості електромагнітних хвиль різних діапазонів детальніше розглянуто далі.


РАДІОХВИЛІ

Радіохвилями називають електромагнітні хвилі довжиною від декількох кілометрів до декількох міліметрів. У короткохвильовій частині радіохвилі плавно переходять у діапазон інфрачервоного випромінювання, хоча чіткої межі між цими видами випромінювання не встановлено. У своїй низькочастотній частині радіохвилі межують з низькочастотним випромінюванням, яке утворюється під час роботи різних електротехнічних пристроїв, які живляться змінним струмом низької частоти. Це випромінювання внаслідок малої частоти має низьку енергію, тому не становить жодного інтересу для передачі інформації в атмосфері на великі відстані. Саме тому спіткала невдача багатьох відомих дослідників і винахідників, які шукали способи передачі інформації за допомогою елетромагнітних хвиль низької частоти, з виконанням принципу дії трансформатора.

У переважній більшості сучасних засобів зв'язку застосовуються радіохвилі

Радіохвилі мають електромагнітну природу

Основною ознакою діапазону радіохвиль є їх поширення на значні відстані, що робить їх цінними для передачі інформації. У науці й радіоотехніці радіохвилі поділяються на довгі (30 000—3 000 м), середні (3 000-200 м), короткі (200—10 м) та ультракороткі (1-19-1.jpg < 10 м). Хвилі цих частин радіодіапазону мають характерні лише їм властивості. Так, довгі і середні хвилі зазнають рефракції і дифракції в атмосфері, внаслідок чого вони здатні огинати поверхню земної кулі (мал. 4.78).

0515-2.jpg

Проте для цього радіопередавачі повинні мати дуже велику потужність, а передавальні антени — величезні розміри. Та й кількість станцій, які можуть працювати у цій частині діапазону без взаємних перешкод не може бути дуже великою. Тому нині для далекого зв'язку їх майже не застосовують.

Радіозв'язок на далекі відстані здійснюється за допомогою коротких хвиль. Ці хвилі, хоча й не огинають земну поверхню, проте відбиваються від йонізованого шару атмосфери (йоносфери). Це шар атмосфери, в якому під дією сонячного випромінювання утворюється велика кількість вільних заряджених частинок (йонів та електронів), і він діє як металеве дзеркало, відбиваючи короткі радіохвилі. Зазнаючи багаторазового відбивання від цього шару та від поверхні Землі, короткі хвилі можуть огинати всю земну кулю (мал. 4.79).

04564.jpg

Проте внаслідок добового та річного коливання висоти йонізованого шару атмосфери зв'язок на коротких хвилях не сталий і залежить від пори року та часу доби.

Ультракороткі хвилі в земних умовах поширюються в межах «прямої видимості» практично не заломлюючись. Висока частота цих хвиль дає змогу здійснювати частотну модуляцію, яка забезпечує високу якість зв'язку. Крім того, в цьому діапазоні можна розмістити велику кількість радіопередавачів, які не заважатимуть один одному в роботі.

Ультракороткі хвилі використовують також для зв'язку з космічними апаратами (мал. 4.80),

02654.jpg

оскільки вільно проходять крізь йоносферу. У земних умовах для забезпечення далекого радіозв'язку з використанням ультракоротких хвиль будуються спеціальні радіорелейні ретрансляційні станції (мал. 4.81).

30193-1.jpg

Знаходячись на відстані «прямої видимості», релейні станції приймають хвилі від однієї станції і передають їх до іншої, змінивши їхню частоту в межах свого діапазону.


ІНФРАЧЕРВОНЕ ВИПРОМІНЮВАННЯ

Спектр видимого світла з одного боку обмежений фіолетовим світлом, із другого — червоним. За їхніми межами око не бачить жодного освітлення. Проте за допомогою спеціальних приладів, чутливих до електромагнітного випромінювання, встановлено, що в крайніх темних ділянках спектра також є деяке випромінювання. Якщо в темну частинку екрана за червоною ділянкою спектра внести термопару, то прилад, з'єднаний з нею, зафіксує її нагрівання. Це засвідчить, що в цій ділянці спектра є випромінювання, невидиме для ока. Вимірювання показують, що довжина хвилі цього випромінювання більша за довжину хвилі червоного світла наприкінці видимої ділянки спектра. У зв'язку з цим таке випромінювання дістало назву інфрачервоного. Межі діапазону інфрачервоних хвиль від 760 нм до 0,1 мм. Вони впритул підходять до діапазону ультракоротких радіохвиль. Відкрив інфрачервоне випромінювання відомий англійський астроном і оптик В. Гершель у 1800 р.

Інфрачервоне випромінювання має електромагнітну природу

Довжина хвилі інфрачервоного випромінювання більша за довжину хвилі видимого випромінювання

Діапазон інфрачервоних хвиль: 760 нм...0,1 мм

Інфрачервоні хвилі випромінюють усі нагріті тіла незалежно від їхньої температури. Лише з підвищенням температури тіла довжина хвилі, на яку припадає максимальна енергія випромінювання, зменшується. Це випромінювання часто називають тепловим. Значна частка інфрачервоних променів знаходиться у випромінюванні батарей водяного опалення, електрокамінів, полум'я вогнищ тощо. Потрапивши на речовинні об'єкти, інфрачервоне випромінювання, у свою чергу, нагріває їх. Біля гарячої батареї водяного опалення нагріваються меблі, тіло людини, підлога тощо. Поширенням інфрачервоних променів, як і будь-якого іншого випромінювання, можна керувати, використовуючи їх взаємодію з речовиною. Для цього добирають речовини, які мало поглинають інфрачервоні промені. Серед них такі відомі речовини, як кам'яна сіль та ебоніт.

Інфрачервоне випромінювання відкрив В. Гершель у 1800 р.

Інфрачервоне випромінювання поглинається речовиною і нагріває її

Інфрачервоне випромінювання застосовується в приладах «нічного бачення»

У техніці застосовують різні пристрої, дія яких грунтується на використанні енергії інфрачервоних променів. Це різні сушарки, що використовуються при фарбуванні автомобілів, для зневоднення вологого дерева тощо. Інфрачервоне випромінювання слабко поглинається повітрям, але добре відбивається від поверхні твердих тіл. Цю властивість використано в системах так званого «нічного бачення», які широко застосовують у військовій справі та наукових дослідженнях. У таких системах приймач приймає хвилі, які випромінює кожне тіло в інфрачервоному діапазоні, або хвилі, відбиті від предметів, освітлених спеціальними «інфрачервоними» прожекторами. Складні електронні системи перетворюють одержану інформацію на зображення предметів, видимих для людського ока.


УЛЬТРАФІОЛЕТОВЕ ВИПРОМІНЮВАННЯ

Людина не має спеціальних органів чуття, які б сприймали всі електромагнітні хвилі. Око людини сприймає лише дуже малу ділянку спектра електромагнітних хвиль, яку називають видимим світлом. Вважають, що око людини сприймає електромагнітні хвилі довжиною від 400 до 760 нм. Для виявлення і реєстрації інших електромагнітних хвиль використовують різноманітні перетворювачі. Наприклад, перетворювачами у радіодіапазоні є електронні апарати — радіоприймачі. Оскільки цей діапазон не обмежений ні з боку коротких, ні з боку довгих хвиль, то можна передбачити, що існують електромагнітні хвилі, довжина яких менша за 400 і більша за 760 нм.

Щоб перевірити це передбачення складемо установку для одержання спектра видимого світла, замінивши призму зі звичайного скла на кварцову. Як освітлювач використаємо електричну дугу або галогенову лампу з кварцовим балоном. Спрямуємо пучок світла від такого освітлювача крізь діафрагму на трикутну призму й одержимо на білому екрані картину суцільного спектра білого світла. Якщо ж узяти пластинку, вкриту сульфідом цинку, і розмістити її на екрані поряд з фіолетовою ділянкою спектра, то вона засвітиться зеленим світлом. Невидиме для ока випромінювання, яке є в цій ділянці спектра, назвали ультрафіолетовим (тим, що знаходиться за фіолетовим). Діапазон електромагнітних хвиль, які належать до ультрафіолетових,— 400 ... 6 нм.

Зір людини не сприймає ультрафіолетового випромінювання

Ультрафіолетове випромінювання спричиняє видиме свічення деяких речовин

Ультрафіолетове випромінювання має низку специфічних властивостей.

Багато речовин випромінюють видиме світло, якщо на них потрапляє ультрафіолетове випромінювання. Це явище покладене в основу методів виявлення ультрафіолетового випромінювання, а також неруйнівного аналізу різних речовин. Зокрема, за кольором світіння продуктів харчування, на які спрямоване ультрафіолетове випромінювання, визначають їхню харчову якість, за кольором світіння мінералів геологи встановлюють їхній хімічний склад. Усім відомий метод виявлення фальшивих грошових купюр, який застосовують у банківських установах.

Ультрафіолетове випромінювання має сильну бактерицидну дію. Під впливом ультрафіолетового випромінювання гине більшість хвороботворних бактерій, тому в лікарнях в усіх операційних кімнатах є спеціальні електричні лампи, які випромінюють ультрафіолетові промені і дезінфікують приміщення. Великий ефект отримують, застосовуючи ультрафіолетове випромінювання для стерилізації різних медичних матеріалів та інструментів.

Під дією ультрафіолетового випромінювання в організмі людини виробляються речовини, які сприяють зміцненню здоров'я людини. Тому малі дози ультрафіолетового випромінювання використовують для оздоровлення людей у медичних установах і санаторіях. Зокрема, цей ефект покладено в основу відомої процедури засмагання під дією сонячного світла, в якому велика частка ультрафіолетового випромінювання.

Діапазон ультрафіолетового випромінювання: 400...6 нм

Неруйнуючий аналіз речовини

Бактерицидна дія

Оздоровлення організму людини

Водночас ультрафіолетове випромінювання  (особливо у  короткохвильовій ділянці спектра) може бути шкідливим для здоров'я людини. Воно здатне не тільки негативно впливати на сітківку ока, викликати опіки шкіри, а й призводити до незворотних змін в організмі, провокувати розвиток хвороб.

Різні речовини по-різному взаємодіють з ультрафіолетовим випромінюванням, пропускаючи або поглинаючи його. Так, звичайне віконне скло поглинає майже всі хвилі ультрафіолетового діапазону, а скло, виготовлене з кварцового піску, пропускає їх практично без змін.


РЕНТГЕНІВСЬКЕ ВИПРОМІНЮВАННЯ

Серед усіх видів електромагнітного випромінювання особливе місце посідають рентгенівські промені. У повсякденному житті ми часто стикаємося з цією назвою, особливо тоді, коли довідуємося про стан свого здоров'я, проходячи обстеження в «рентгенівському» кабінеті лікарні чи поліклініки. Довжина хвилі цього випромінювання менша 6 нм.

Для генерування рентгенівського випромінювання застосовують спеціальні електронні прилади, які називають рентгенівськими трубками (мал. 4.82).

30197.jpg

Це скляний або металевий балон, з якого викачане повітря. У балоні змонтовано два електроди, один з яких (катод) підігрівається спеціальною спіраллю, по якій пропускають електричний струм. Унаслідок нагрівання з катода вилітає потік електронів, і навколо нього утворюється електронна хмарка. Якщо до катода і другого електрода (анода) прикласти високу напругу, то електрони почнуть рухатися від катода до анода, прискорюючись електричним полем у проміжку катоданод. Унаслідок гальмування електронів речовиною анода з'являється електромагнітне випромінювання, яке дістало назву рентгенівського. Спектр цього випромінювання досить широкий і містить різні довжини хвиль, а тому є суцільним. Це пояснюють тим, що електрони, які потрапляють на анод, мають різні швидкості. Збільшення прискорювальної напруги між анодом і катодом зумовлює розширення спектра, в якому з'являються хвилі все меншої довжини. За досить високої напруги у рентгенівському випромінюванні починають переважати хвилі певних довжин. Вони утворюють так званий характеристичний спектр рентгенівського випромінювання. За цим спектром визначають внутрішню будову речовини та її хімічний склад.

Спосіб вимірювання довжини хвиль рентгенівського випромінювання запропонував німецький фізик М. Лауе в 1912 р. У його основу покладено явище дифракції цих хвиль на природних кристалах, які для рентгенівських променів є своєрідними дифракційними ґратками.

При гальмуванні електронів у речовині анода з'являється гальмівне рентгенівське випромінювання

Спектр  гальмівного  випромінювання суцільний

Характеристичний спектр

Спосіб вимірювання довжини хвилі рентгенівського випромінювання запропонував М. Лауе в 1912 р

Історія відкриття і дослідження рентгенівського випромінювання складна і суперечлива

Цікава і драматична історія відкриття рентгенівських променів. Перші вакуумні трубки для одержання Х-променів (таку назву спочатку мало невідоме випромінювання) були створені видатним фізиком, українцем за походженням Іваном Пулюєм, який тривалий час жив і працював у Австрії.

30198.jpg

Він першим довів, що випромінювання з вакуумних трубок, по яких проходить електричний струм, має хвильові властивості. Учений не тільки встановив їхню природу, а й дослідив їхні основні властивості. Одержані І. Пулюєм фотознімки внутрішніх органів людини дотепер публікуються в навчальній літературі (мал. 4.83).

30199.jpg

Однак сталося так, що про відкриття нового виду електромагнітного випромінювання першим повідомив німецький фізик В. Рентген у 1895 р. Після публікацій В. Рентгена відкрите випромінювання почали називати рентгенівським.

0454.jpg

Рентгенівське випромінювання має велику проникну здатність, тому його використовують у промисловості для дослідження внутрішньої будови та виявлення дефектів металевих деталей.

Це випромінювання чинить сильну фізіологічну дію на людський організм і може за тривалого впливу спричинити важкі, часто невиліковні недуги. У зв'язку з цим лікарі не рекомендують знаходитися близько біля електронних приладів, які працюють під високою напругою. Одним із таких приладів є кінескоп телевізора чи комп'ютера. Оскільки електрони в кінескопі прискорюються високою напругою (десятки тисяч вольт), то від екрана, на який потрапляють електрони, поширюються рентгенівські промені. Хоча їхня інтенсивність не така велика, як у спеціально виготовлених рентгенівських трубках, однак тривала дія на організм людини може призвести до захворювання.

ЗАПИТАННЯ
1. Чому електромагнітні хвилі мають різні довжини?
2. Чи існують у природі закони, які обмежують довжину електромагнітної хвилі?
3. Як побудована логарифмічна шкала електромагнітних хвиль?
4. На які діапазони поділяють шкалу електромагнітних хвиль?
5. За якими ознаками виділяють діапазони електромагнітних хвиль?
6. На які частини поділяють радіодіапазон хвиль?
7. Чому в разі використання коротких хвиль досягають значних відстаней зв'язку?
8. У чому полягає причина відмінності у процесі поширення коротких хвиль: удень і вночі; влітку і взимку?
9. Які властивості ультракоротких хвиль?
10. Чому ультракороткі хвилі в наш час набули широкого застосування?
11. Які основні властивості інфрачервоних променів?
12. Що є джерелом інфрачервоного випромінювання?
13. Яке практичне застосування мають інфрачервоні промені?
14. Яке електромагнітне випромінювання називають інфрачервоним?
15. Яке електромагнітне випромінювання називають ультрафіолетовим?
16. Які основні властивості ультрафіолетового випромінювання?
17. Де застосовують ультрафіолетове випромінювання?
18. Як ультрафіолетове випромінювання взаємодіє з речовиною?
19. Яке електромагнітне випромінювання називають рентгенівським?
20. Як одержують рентгенівське випромінювання?
21. Які основні властивості рентгенівського випромінювання?
22. Хто з учених відкрив рентгенівські промені?
23. Де застосовують рентгенівські промені на практиці?
24. Чи можна змінювати довжину хвилі рентгенівського випромінювання і як?
25. Яким способом вимірюють довжину хвилі рентгенівського випромінювання?
26. Чим відрізняється характеристичний спектр рентгенівського випромінювання від суцільного?

Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко, Фізика, 11 клас
Вислано читачами з інтернет-сайтів  


Повний перелік тем з фізики, календарний план по всім предметам згідно шкільної програми, домашня робота, курси та завдання з фізики для 11 класу


Зміст уроку
1236084776 kr.jpg конспект уроку і опорний каркас                      
1236084776 kr.jpg презентація уроку 
1236084776 kr.jpg акселеративні методи та інтерактивні технології
1236084776 kr.jpg закриті вправи (тільки для використання вчителями)
1236084776 kr.jpg оцінювання 

Практика
1236084776 kr.jpg задачі та вправи,самоперевірка 
1236084776 kr.jpg практикуми, лабораторні, кейси
1236084776 kr.jpg рівень складності задач: звичайний, високий, олімпійський
1236084776 kr.jpg домашнє завдання 

Ілюстрації
1236084776 kr.jpg ілюстрації: відеокліпи, аудіо, фотографії, графіки, таблиці, комікси, мультимедіа
1236084776 kr.jpg реферати
1236084776 kr.jpg фішки для допитливих
1236084776 kr.jpg шпаргалки
1236084776 kr.jpg гумор, притчі, приколи, приказки, кросворди, цитати

Доповнення
1236084776 kr.jpg зовнішнє незалежне тестування (ЗНТ)
1236084776 kr.jpg підручники основні і допоміжні 
1236084776 kr.jpg тематичні свята, девізи 
1236084776 kr.jpg статті 
1236084776 kr.jpg національні особливості
1236084776 kr.jpg словник термінів                          
1236084776 kr.jpg інше 

Тільки для вчителів
1236084776 kr.jpg ідеальні уроки 
1236084776 kr.jpg календарний план на рік 
1236084776 kr.jpg методичні рекомендації 
1236084776 kr.jpg програми
1236084776 kr.jpg обговорення


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.