Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


История чисел и систем счисления

Гипермаркет знаний>>Информатика>>Информатика 9 класс>>Информатика: История чисел и систем счисления



§ 45. История чисел и систем счисления


Основные темы параграфа:

♦ непозиционные системы древности;
♦ позиционные системы.

О системах счисления (двоичной и десятичной) говорилось в § 16. Система счисления — это способ изображения чисел и соответствующие ему правила действия над числами.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные.


Непозиционные системы древности

В древние времена, когда люди начали считать, появилась потребность в записи чисел. Первоначально количество предметов отображали равным количеством каких-нибудь значков: насечек, черточек, точек.

Изучение археологами «записок» времен палеолита на кости, камне, дереве показало, что люди стремились группировать отметки по 3, 5, 7, 10 штук. Такая группировка облегчала счет. Люди учились считать не только единицами, но и тройками, пятерками и пр. Поскольку первым вычислительным инструментом у человека были пальцы, поэтому и счет чаще всего вели группами по 5 или по 10 предметов.

В дальнейшем свое название получили десяток десятков (сотня), десяток сотен (тысяча) и т. д. Такие узловые числа для удобства записи стали обозначать особыми значками — цифрами. Если при подсчете предметов их оказывалось 2 сотни, 5 десятков и еще 4 предмета, то при записи этой величины дважды повторяли знак сотни, пять раз — знак десятков и четыре раза знак единицы.

В таких системах счисления от положения знака в записи числа не зависит величина, которую он обозначает; поэтому они называются непозиционными системами счисления.

Непозиционными системами пользовались древние египтяне, греки, римляне и некоторые другие народы древности.

Непозиционные системы


Цифры майя

До нас дошла римская система записи чисел (римские цифры), которая в некоторых случаях применяется в нумерации (века, тома в собрании сочинений, главы книги). В римской системе в качестве цифр используются латинские буквы:

 I V  X   L   С    D     М

1 5 10 50 100 500 1000

Например, число ССХХХII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

Если слева в записи римского числа стоит меньшая цифра, а справа — большая, то их значения вычитаются, в остальных случаях значения складываются.

VI = 5+1 = 6, а IV = 5 - 1 = 4.
МСМХСVII = 1000 + (-100 + 1000) + (-10 + 100) + 5 + 1 + 1 = 1997.

Римская система

На Руси вплоть до XVIII века использовалась непозиционная система славянских цифр. Буквы кириллицы (славянского алфавита) имели цифровое значение, если над ними ставился специальный знак ~ (титло). Например: Тило. Интересно, что существовали обозначения очень больших величин. Самая большая величина называлась «колода» и обозначалась знаком Колода. Это число равно 1050. Считалось, что «боле сего несть человеческому уму разумевати».

Непозиционные  системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.


Позиционные системы

Впервые идея позиционной системы счисления возникла в Древнем Вавилоне.

В позиционных системах счисления количественное значение, обозначаемое цифрой в записи числа, зависит от позиции цифры в числе.

Основание позиционной системы счисления равно количеству используемых в системе цифр.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Однако широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVI веке. Эта система позволяет легко выполнять любые арифметические вычисления. Записывать сколь угодно большие числа. Распространение арабской системы дало мощный толчок развитию математики.

С позиционной десятичной системой счисления вы знакмы с раннего детства, только, возможно, не знали, что она так называется.

Что означает свойство позиционности системы счисления, легко понять на примере любого многозначного десятичного числа. Например, в числе 333 первая тройка означает три сотни, вторая — три десятка, третья — три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные значения.

333 = 3 · 100 + 3 · 10 + 3.

Еще пример:

32 478 = 3 · 10 000 + 2 · 1000 + 4 · 100 + 7 · 10 + 8 = 3 · 104 + 2 · 103 + 4 · 102 + 7 · 101 + 8 · 100.

Отсюда видно, что всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26,387 = 2 · 101 + 6 · 100 + 3 · 10-1 + 8 · 10-2 + 7 · 10-3.

Очевидно, число «десять» — не единственно возможное основание позиционной системы. Известный русский математик Н. Н. Лузин так выразился по этому поводу: «Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмеричной системой».

За основание позиционной системы счисления можно принять любое натуральное число, большее 1. Упомянутая выше вавилонская система имела основание 60. Следы этой системы сохранились до наших дней в порядке счета единиц времени (1 час = 60 минут, 1 минута = 60 секунд).

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы.

Вот примеры алфавитов нескольких систем:

Основание
Система
Алфавит
n=2
Двоичная
0 1
n=3
Троичная
0 1 2
n=8
Восьмеричная
0 1 2 3 4 5 6 7
n=16
Шестнадцатиричная
0 1 2 3 4 5 6 7 8 9 A B C D E F

Основание системы, к которой относится число, обычно обозначается подстрочным индексом к этому числу:

1011012, 36718, ЗВ8F16.

А как строится ряд натуральных чисел в разных позиционных системах счисления? Происходит это по тому же принципу, что и в десятичной системе. Сначала идут однозначные числа, потом двузначные, затем трехзначные ит. д. Самое большое однозначное число в десятичной системе — 9. Затем следуют двузначные числа — 10, 11,12, … Самое большое двузначное число — 99, далее идут 100, 101, 102 и т. д. до 999, затем 1000 и т. д.

Для примера рассмотрим пятеричную систему. В ней ряд натуральных чисел выглядит так:

1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 100, 101, …, 444, 1000, ... .

Видно, что здесь число цифр «нарастает» быстрее, чем в десятичной системе. Быстрее всего число цифр растет в двоичной системе счисления. В следующей таблице сопоставляются начала натуральных рядов десятичных и двоичных чисел:

10
1
2
3
4
5
6
7
8
9
10
11
2
1
10
11
100
101
110
111
1000
1001
1010
1011

<u</u>

Коротко о главном

Система счисления — это определенный способ записи чисел и соответствующие правила действия над числами.

Системы счисления бывают позиционными и непозиционными. Примером непозиционной системы является римская система записи чисел.

В позиционной системе счисления количественное значение каждой цифры зависит от позиции цифры в числе.

Алфавит системы счисления — множество цифр, используемых в ней. Основание системы счисления равно мощности алфавита (числу цифр).

Наименьшее возможное основание позиционной системы счисления — 2. Такая система называется двоичной.

Арабская система записи чисел является десятичной, позиционной.


Вопросы и задания

1. Что такое система счисления?
2. В чем основное различие позиционных и непозиционных систем счисления?
3. Чему равно основание системы счисления?
4. Почему арабская система записи чисел называется десятичной позиционной?
5. Каково наименьшее основание для позиционной системы?
6. Чему в десятичной системе счисления равны следующие числа, записанные римскими цифрами:
XI; IX; LХ; CLX; МDCХLVIII?
7. Запишите римскими цифрами числа, равные следующим десятичным:
13; 99; 666; 444; 1692.
8. Запишите последовательность двадцати чисел натурального ряда, начиная от единицы, для позиционных систем с основаниями 2, 3, 5, 8. Оформите результаты в виде таблицы:

n = 10
1
2
3
...
19
20
n = 2






n = 3






n = 5






n = 8






 9. Постройте таблицы умножения для однозначных чисел  в двоичной и троичной системах счисления.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов


Сборник конспектов уроков информатики, учебная программа по информатике 9 класс, материалы для подготовки к урокам, готовые домашние задания


Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.