KNOWLEDGE HYPERMARKET


Параллельные прямые. Полные уроки
 
(13 промежуточных версий не показаны.)
Строка 1: Строка 1:
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс. Полные уроки|Математика 7 класс. Полные уроки]]>>Геометрия: Геометрические фигуры. Полные уроки'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 7 класс. Полные уроки|Математика 7 класс. Полные уроки]]>>Геометрия: Геометрические фигуры. Полные уроки'''  
-
----
+
<metakeywords>Гипермаркет знаний, Геометрия, Планиметрия, 7 класс, Параллельные прямые</metakeywords>
-
<u>'''<metakeywords>Гипермаркет знаний, Геометрия, Планиметрия, 7 класс, Параллельные прямые</metakeywords>Параллельные прямые.'''</u>  
+
<h2>Параллельные прямые. Определение</h2>
-
<!--[if gte mso 9]><xml>
+
Две прямые на плоскости называются параллельными, если они не пересекаются.  
-
<w:WordDocument>
+
-
  <w:View>Normal</w:View>
+
-
  <w:Zoom>0</w:Zoom>
+
-
  <w:HyphenationZone>21</w:HyphenationZone>
+
-
  <w:PunctuationKerning/>
+
-
  <w:ValidateAgainstSchemas/>
+
-
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
+
-
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
+
-
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
+
-
  <w:Compatibility>
+
-
  <w:BreakWrappedTables/>
+
-
  <w:SnapToGridInCell/>
+
-
  <w:WrapTextWithPunct/>
+
-
  <w:UseAsianBreakRules/>
+
-
  <w:DontGrowAutofit/>
+
-
  </w:Compatibility>
+
-
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
+
-
</w:WordDocument>
+
-
</xml><![endif]--><!--[if gte mso 9]><xml>
+
-
<w:LatentStyles DefLockedState="false" LatentStyleCount="156">
+
-
</w:LatentStyles>
+
-
</xml><![endif]--><!--[if gte mso 10]>
+
-
<style>
+
-
/* Style Definitions */
+
-
table.MsoNormalTable
+
-
{mso-style-name:"Обычная таблица";
+
-
mso-tstyle-rowband-size:0;
+
-
mso-tstyle-colband-size:0;
+
-
mso-style-noshow:yes;
+
-
mso-style-parent:"";
+
-
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
+
-
mso-para-margin:0cm;
+
-
mso-para-margin-bottom:.0001pt;
+
-
mso-pagination:widow-orphan;
+
-
font-size:10.0pt;
+
-
font-family:"Times New Roman";
+
-
mso-ansi-language:#0400;
+
-
mso-fareast-language:#0400;
+
-
mso-bidi-language:#0400;}
+
-
</style>
+
-
<![endif]-->
+
-
'''<span lang="RU" style="font-size: 10pt;">Определение.</span>'''<span lang="RU" style="font-size: 10pt;">
+
Параллельность прямых а и b обозначают так: а||b. На
-
</span>''<span lang="RU" style="font-size: 10pt;">Две прямые на плоскости называются параллельными, если они не пересекаются.</span>''
+
рисунке 1 изображены прямые a и b, перпендикулярные к прямой с. Такие прямые а и b не пересекаются, т. е. они параллельны.  
-
<span lang="RU" style="font-size: 10pt;">Параллельность
+
<br>[[Image:25102010.jpg|300x252px|25102010.jpg]]<br>  
-
прямых а и b обозначают так: а||</span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">. На
+
-
рисунке 1 изображены прямые </span><span lang="EN-US" style="font-size: 10pt;">a</span><span lang="RU" style="font-size: 10pt;"> и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">, перпендикулярные к прямой с. Такие прямые а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;"> не пересекаются, т. е. они параллельны.</span>  
+
-
<span lang="RU" style="font-size: 10pt;">[[Image:25102010.jpg|300x252px|25102010.jpg]]</span>
+
Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка
 +
называются параллельными, если они лежат на параллельных прямых. На рисунке (рис. 2,а) отрез­ки АВ и СD параллельны (АВ||СО) а отрезки МN и СD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 2,б), луча и прямой, отрезка и луча, двух лучей(рис. 2,в).  
-
<span lang="RU" style="font-size: 10pt;">Наряду
+
<br>[[Image:25102010 1.jpg|501x167px|25102010 1.jpg]]<br>
-
с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка
+
-
называются параллельными, если они лежат на параллельных прямых. На рисунке (рис. 2,а) отрез­ки АВ и С</span><span lang="EN-US" style="font-size: 10pt;">D</span><span lang="RU" style="font-size: 10pt;"> параллельны (АВ||СО) а отрезки
+
-
МN и С</span><span lang="EN-US" style="font-size: 10pt;">D</span><span lang="RU" style="font-size: 10pt;"> не параллельны. Аналогично
+
-
определяется параллельность отрезка и прямой (рис. 2,б), луча и прямой, отрезка
+
-
и луча, двух лучей(рис. 2,в).</span>  
+
-
[[Image:25102010 1.jpg|501x167px|25102010 1.jpg]]
+
<h2>Признаки параллельности двух прямых</h2>
-
'''<u><span lang="RU" style="font-size: 10pt;">Признаки</span> параллельности двух прямых.</u>'''
+
Прямая с называется секущей ми отношению к прямым а и b, если она пересекает их в двух точках (рис. 3). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 3 обозначены цифрами.
-
<span lang="RU" style="font-size: 10pt;">Прямая с называется секущей ми отношению к прямым а
+
Некоторые пары этих углов имеют специальные названия:  
-
и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">, если она пересекает их в двух
+
-
точках (рис. 3). При пересечении прямых а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">
+
-
секущей с образуется восемь углов, которые на рисунке 3 обозначены цифрами.
+
-
Некоторые пары этих углов имеют специальные названия:</span>
+
-
''<span lang="RU" style="font-size: 10pt;">накрест</span>'' лежащие углы: 3 и 5, 4 и 6;
+
накрест лежащие углы: 3 и 5, 4 и 6;<br>  
 +
односторонние углы: 4 и 5, 3 и 6;<br>
 +
соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.<br>
-
''<span lang="RU" style="font-size: 10pt;">односторонние</span>'' углы: 4 и 5, 3 и 6; соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.  
+
<br>[[Image:25102010 2.jpg|300x238px|25102010 2.jpg]]<br>
-
<u>[[Image:25102010 2.jpg|300x238px|25102010 2.jpg]]</u>
+
Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.  
-
<span lang="RU" style="font-size: 10pt;">Рассмотрим
+
'''Теорема.'''Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.  
-
три признака параллельности двух прямых, связанные с этими парами углов.</span>
+
-
'''<span lang="RU" style="font-size: 10pt;">Теорема.</span>'''<span lang="RU" style="font-size: 10pt;">
+
'''Доказательство.'''Пусть при пересечении прямых а и b секущей
-
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые
+
АВ накрест лежащие углы равны: ∠1=∠2 (рис. 4, а).  
-
параллельны.</span>
+
-
'''<span lang="RU" style="font-size: 10pt;">Доказательство.</span>'''<span lang="RU" style="font-size: 10pt;">
+
Покажем,что а||b. Если углы 1 и 2 прямые (рис. 4, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны. Рассмотрим случай,
-
Пусть при пересечении прямых а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;"> секущей
+
-
АВ накрест лежащие углы равны: </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">1=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">2 (рис. 4, а).</span>
+
-
 
+
-
<span lang="RU" style="font-size: 10pt;">окажем,
+
-
что а||</span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">. Если углы 1 и 2 прямые (рис. 4, б), то прямые а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">
+
-
перпендикулярны к прямой АВ и, следовательно, параллельны. Рассмотрим случай,
+
когда углы 1 и 2 не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН
когда углы 1 и 2 не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН
-
к прямой а (рис. 4, в). На прямой </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;"> от точки
+
к прямой а (рис. 4, в). На прямой b от точки В отложим отрезок ВН1 равный отрезку AH, как показано на рисунке 4, в, и проведем отрезок ОН1. Треугольники ОНА и ОН1В
-
В отложим отрезок ВН1 равный отрезку </span><span lang="EN-US" style="font-size: 10pt;">AH</span><span lang="RU" style="font-size: 10pt;">, как
+
равны по двум сторонам и углу между ними (АО=ВО. АН=ВН1 ∠1=∠2), поэтому ∠3=∠4 и ∠15=∠16. Из равенства ∠3=∠4 следует, что точка Н1 лежит на продолжении луча ОН, т. е. точки Н, О и Н1 лежат на одной прямой, а из равенства ∠5=∠6 следует, что угол 6 —
-
показано на рисунке 4, в, и проведем отрезок ОН1. Треугольники ОНА и ОН1В
+
прямой (так как угол 5 — прямой). Значит, прямые а и b перпендикулярны к прямой НН1 поэтому они параллельны. Теорема доказана.  
-
равны по двум сторонам и углу между ними (АО=ВО. АН=ВН1 </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">1=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">2), поэтому </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">3=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">4 и </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">15=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">16. Из равенства </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">3=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">4 следует, что точка Н1 лежит на
+
-
продолжении луча ОН, т. е. точки Н, О и Н1 лежат на одной прямой, а из
+
-
равенства </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">5=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">6 следует, что угол 6 —
+
-
прямой (так как угол 5 — прямой). Значит, прямые а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">
+
-
перпендикулярны к прямой НН1 поэтому они параллельны. Теорема доказана.
+
-
</span>
+
-
<span lang="RU" style="font-size: 10pt;">[[Image:25102010 3.jpg|499x166px|25102010 3.jpg]]</span>  
+
<br>[[Image:25102010 3.jpg|499x166px|25102010 3.jpg]]<br>
-
'''<span lang="RU" style="font-size: 10pt;">Теорема.</span>'''<span lang="RU" style="font-size: 10pt;">
+
'''Теорема.'''Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.  
-
Если при пересечении двух прямых секущей соответственные углы равны, то прямые
+
-
параллельны.</span>
+
-
'''<span lang="RU" style="font-size: 10pt;">Доказательство.</span>'''<span lang="RU" style="font-size: 10pt;">
+
'''Доказательство.'''Пусть при пересечении прямых а и b секущей с соответственные углы равны, например <span>∠1=<span>∠<span style="font-size: 10pt;">2 (рис. 5). Так как углы 2 и 3 - вертикальные, то ∠2=∠3. Из этих двух равенств следует, что ∠1=∠3.
-
Пусть при пересечении прямых а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;"> секущей
+
Но углы 1 и 3 — накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.  
-
с соответственные углы равны, например </span><span>∠</span><span lang="RU" style="font-size: 10pt;">1=</span><span>∠</span><span style="font-size: 10pt;">2</span><span lang="RU" style="font-size: 10pt;"> (рис. 5). Так как углы 2 и 3 - </span><span lang="RU" style="font-size: 10pt;">вертикальные,
+
-
то </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">2=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">3. Из этих двух равенств
+
-
следует, что </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">
+
-
1=</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">3.
+
-
Но углы 1 и 3 — накрест лежащие, поэтому прямые а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">
+
-
параллельны. Теорема доказана.</span>
+
-
<span lang="RU" style="font-size: 10pt;">Теорема.
+
'''Теорема.'''Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.  
-
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°,
+
-
то прямые параллельны.</span>
+
-
<span lang="RU" style="font-size: 10pt;">Доказательство.
+
'''Доказательство.'''Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1+∠4=180° (см. рис. 5). Так как
-
Пусть при пересечении прямых а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="EN-US" style="font-size: 10pt;"> </span><span lang="RU" style="font-size: 10pt;">секущей
+
углы 3 и 4 — смежные, то ∠3+∠4=180°. Из этих двух равенств следует, что накрест
-
с сумма односторонних углов равна 180°, например </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">1+</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">4=180° (см. рис. 5). Так как
+
лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.  
-
углы 3 и 4 — смежные, то </span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">3+</span><span lang="RU">∠</span><span lang="RU" style="font-size: 10pt;">4=180°. Из этих двух равенств следует, что накрест
+
-
лежащие углы 1 и 3 равны, поэтому прямые а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">
+
-
параллельны. Теорема доказана.</span>
+
-
<span lang="RU" style="font-size: 10pt;">[[Image:25102010 4.jpg|300x266px|25102010 4.jpg]]</span>  
+
<br>[[Image:25102010 4.jpg|300x266px|25102010 4.jpg]]<br>  
-
<br>  
+
<h2>Практические способы построения параллельных прямых</h2>
-
'''<span lang="RU" style="font-size: 10pt;">Практические способы построения параллельных прямых.</span>'''
+
Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертежного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертежный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьемся того, чтобы точ ка М оказалась на стороне угольника, и проведем прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами альфа и бета, равны.  
-
<span lang="RU" style="font-size: 10pt;">Признаки параллельности
+
<br>[[Image:25102010 5.jpg|400x269px|25102010 5.jpg]]<br>  
-
прямых лежат в основе способов построения параллельных прямых с помощью
+
-
различных инструментов, используемых на практике. Рассмотрим, например, способ построения
+
-
параллельных прямых с помощью чертежного угольника и линейки. Чтобы построить прямую,
+
-
проходящую через точку М и параллельную данной прямой а, приложим чертежный
+
-
угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая
+
-
угольник вдоль линейки, добьемся того, чтобы точ ка М оказалась на стороне
+
-
угольника, и проведем прямую </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;">. Прямые
+
-
а и </span><span lang="EN-US" style="font-size: 10pt;">b</span><span lang="RU" style="font-size: 10pt;"> параллельны, так как
+
-
соответственные углы, обозначенные на рисунке 103 буквами альфа</span>  
+
-
<span lang="RU" style="font-size: 10pt;">и
+
Еще есть способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертежной практике.  
-
бета, равны.</span>
+
-
[[Image:25102010 5.jpg|400x269px|25102010 5.jpg]]
+
Аналогичный способ применяется при выполнении столярных работ, где для разметки
 +
параллельных прямых используется малка (две деревянные планки, скрепленные
 +
шарниром).
-
<span lang="RU" style="font-size: 10pt;">Еще есть способ построения параллельных прямых при
+
<br>{{#ev:youtube|_fJkecAiJY0}}<br>
-
помощи рейсшины. Этим способом пользуются в чертежной практике.</span>  
+
-
<span lang="RU" style="font-size: 10pt;">Аналогичный
 
-
способ применяется при выполнении столярных работ, где для разметки
 
-
параллельных прямых используется малка (две деревянные планки, скрепленные
 
-
шарниром).</span><u></u>
 
-
<u>{{#ev:youtube|_fJkecAiJY0}}</u><u></u>  
+
<h2>Интересный факт</h2>
-
<u></u>
+
Особое место в истории математики занимает '''пятый постулат Евклида''' ('''аксиома о параллельных прямых'''). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь '''в середине XIX века''' благодаря исследованиям '''Н. И. Лобачевского''', '''Б. Римана''' и '''Я. Бойяи''' стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.
-
----
+
'''Аксиома параллельных прямых'''
-
<u></u><u>'''Интересный факт:'''</u>
+
Еще древние греки придумали простой способ: как провести циркулем и линейкой через точку А, лежащую вне данной прямой l, другую прямую m, не пересекающую прямую l. Но единственно ли решение этой задачи? Или через точку А можно провести несколько разных прямых, не пересекающих исходную прямую m?
-
Особое место в истории математики занимает '''пятый постулат Евклида''' ('''аксиома о параллельных прямых'''). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь '''в середине XIX века''' благодаря исследованиям '''Н. И. Лобачевского''', '''Б. Римана''' и '''Я. Бойяи''' стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.  
+
Евклид, видимо, первый среди эллинов понял, что ответ на этот вопрос нельзя получить, исходя из прочих свойств прямых и точек – тех, которые он сформулировал в виде аксиом и постулатов. Нужно ввести дополнительный постулат о единственности искомой прямой m – и назвать эту прямую параллельной!
-
----
+
А возможны ли иные формулировки постулата о параллельных прямых – не совместимые с постулатом Евклида? Например, можно предположить существование нескольких разных прямых, не пересекающих данную прямую l и проходящих через общую точку А. Приведет ли такое предположение к логическому противоречию или нет? Если нет, то возможны иные геометрии, кроме евклидовой!
-
<u></u><u>'''Вопросы:'''</u>
+
Первую неевклидову геометрию изобрели в 1820-е годы сразу три талантливых математика: немец Карл Гаусс, русский Николай Лобачевский и венгр Янош Бойяи. Русский математик оказался самым смелым и упорным из троих открывателей. Он первый опубликовал свою книгу с предсказанием замечательных свойств неевклидовых фигур. Например, на плоскости Лобачевского сумма внутренних углов треугольника всегда меньше 180 градусов. Она принимает разные значения для разных треугольников; при этом два подобных треугольника обязательно равны!
-
#Какие прямые называются параллельными?
+
В конце 19 века геометры Клейн и Пуанкаре изобрели довольно простые модели поверхностей, на которых воплощается геометрия Лобачевского. Еще раньше Риман заметил, что на обычной сфере воплощена третья возможная геометрия (проективная): в ней «параллельных» прямых вовсе нет, а сумма внутренних углов треугольника всегда больше, чем 180 градусов.
-
#Какие практические способы построения параллельных прямых существуют.?<br>
+
-
<u>'''Список использованных источников:'''</u><br>
+
До начала 20 века считалось, что неевклидовы геометрии могут быть полезны только внутри математической науки. Но в 1910-е годы Эйнштейн создал Общую Теорию Относительности: она оказалась четырехмерным воплощением неевклидовой геометрии Лобачевского. С тех пор физики верят, что каждая непротиворечивая математическая конструкция воплощена где-нибудь в Природе. Возможно, что так оно и есть.
-
#Атанасян, Геометрия 7-9 класс.
+
<br>{{#ev:youtube|UOnCLJF5Sco}} <br>
-
#http&nbsp;://moodle.nci.kz
+
-
#http://mathworld.ru
+
 +
 +
<h2>Историческая справка</h2>
 +
 +
В древние века, буквально 2500 лет назад, в известной школе Пифагора греческое слово «параллелос» начали употреблять, как геометрический термин, хотя определения параллельных прямых в те времена еще не знали. Но исторические факты говорят о том, что древнегреческий ученый Евклид в третьем веке до нашей эры, в своих книгах все же, раскрыл смысл такого понятия, как параллельные прямые.
 +
 +
Как вам уже известно, из пройденного материала в предыдущих классах, термин «параллелос» в переводе с греческого языка обозначает рядом идущий или проведенный друг возле друга.
 +
 +
В математике для обозначения параллельных прямых существует специальный знак. Правда, не всегда знак параллельности имел теперешний вид. Так, например, древнегреческий математик Папп в третьем веке нашей эры для обозначения параллельности пользовался знаком равно «=». И лишь в восемнадцатом веке, благодаря Уильяму Оутреду для обозначения параллельных прямых, стали использовать знак «//». Если есть, например, параллельные а и в, то на письме их следует записывать, как а//в
 +
 +
А вот знак «=» во всеобщее обращение ввел Рекорд и его стали использовать, как знак равенства.
 +
 +
<h2>Параллельные прямые в быту и повседневной жизни</h2>
 +
 +
<br>
 +
[[Image:7kl_Parallel01.jpg|500x500px|параллель]]
<br>  
<br>  
-
----
+
С параллельными прямыми мы часто встречаемся в окружающей нас жизни, хотя, как правило, редко на этом акцентируем свое внимание. На уроках музыки, открывая нотную тетрадь, сразу же невооруженным взглядом мы видим линии нотного стана. Но параллельные линии вы можете увидеть не только в нотных тетрадях и сборниках песен, но и если внимательно присмотритесь к музыкальным инструментам. Ведь струны гитары, арфы или органа также расположены параллельно.
 +
 
 +
Подняв на улице глаза вверх, вы видите параллельно проходящие электрические провода. Оказавшись в метро или на железной дороге, также не сложно заметить, что рельсы расположены параллельно друг к другу.
 +
 
 +
Параллельные линии можно встретить повсюду. Они нам постоянно встречаются в быту, живописи. Без них не обойтись и в архитектуре, так как в строительстве зданий строго учитывается понятие параллельности.
 +
 
 +
<br>
 +
[[Image:7kl_Parallel02.jpg|500x500px|параллель]]
 +
<br>
 +
 
 +
Если вы внимательно посмотрите на изображение, то сразу же заметите в этих архитектурных сооружениях присутствие параллельных прямых. Возможно, они служат так долго и остаются красивыми благодаря тому, что архитекторы и инженеры при создании этих культовых зданий использовали параллельные прямые.
 +
 
 +
А задумывались ли вы когда-нибудь над тем, почему в линиях электропередач, провода располагаются параллельно? И представьте себе, чтобы было, если бы они не были бы параллельными и пересекались или соприкасались друг с другом. А это привело бы к нехорошим последствиям, при которых могло произойти замыкание, перебоям и отсутствию электричества. А что могло произойти с поездом, если бы рельсы не были бы параллельными? Об этом даже страшно подумать.
 +
 
 +
<br>
 +
[[Image:7kl_Parallel03.jpg|500x500px|параллель]]
 +
<br>
 +
 
 +
Вам всем хорошо известно, что параллельные прямые никогда не пересекаются. Но если вы долго будете смотреть вдаль, в бесконечность, то в итоге можете увидеть, как параллельные прямые пересекаются. В этом случае мы с вами столкнулись с иллюзией зрения. Может быть, только благодаря таким иллюзиям и зрительным искажениям и появилась живопись.
 +
 
 +
<br>
 +
[[Image:7kl_Parallel04.jpg|500x500px|параллель]]
 +
<br>
 +
 
 +
<br>
 +
[[Image:7kl_Parallel05.jpg|500x500px|параллель]]
 +
<br> 
 +
 
 +
<h2>Домашнее задание</h2>
-
Отредактировано и выслано Потурнаком С .А.  
+
1. Назовите свои примеры, где вы в повседневной жизни, в быту или в природе сталкиваетесь с моментами или фактами параллельности.<br>
 +
2. Какие вы знаете способы, благодаря которым можно начертить параллельные прямые? Назовите эти способы.<br>
 +
3. Начертите параллельные прямые в тетради, способами, которые вам известны.<br>
 +
4. При каких условиях прямые, можно назвать параллельными?<br>
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].
+
'''Вопросы:'''
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].  
+
1. Какие прямые называются параллельными? <br>
 +
2. Какие практические способы построения параллельных прямых существуют.?<br>
[[Category:Математика_7_класс]]
[[Category:Математика_7_класс]]

Текущая версия на 18:53, 5 августа 2015

Гипермаркет знаний>>Математика>>Математика 7 класс. Полные уроки>>Геометрия: Геометрические фигуры. Полные уроки

Содержание

Параллельные прямые. Определение

Две прямые на плоскости называются параллельными, если они не пересекаются.

Параллельность прямых а и b обозначают так: а||b. На рисунке 1 изображены прямые a и b, перпендикулярные к прямой с. Такие прямые а и b не пересекаются, т. е. они параллельны.


25102010.jpg

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными, если они лежат на параллельных прямых. На рисунке (рис. 2,а) отрез­ки АВ и СD параллельны (АВ||СО) а отрезки МN и СD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 2,б), луча и прямой, отрезка и луча, двух лучей(рис. 2,в).


25102010 1.jpg

Признаки параллельности двух прямых

Прямая с называется секущей ми отношению к прямым а и b, если она пересекает их в двух точках (рис. 3). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 3 обозначены цифрами.

Некоторые пары этих углов имеют специальные названия:

накрест лежащие углы: 3 и 5, 4 и 6;
односторонние углы: 4 и 5, 3 и 6;
соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.


25102010 2.jpg

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема.Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Доказательство.Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1=∠2 (рис. 4, а).

Покажем,что а||b. Если углы 1 и 2 прямые (рис. 4, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны. Рассмотрим случай, когда углы 1 и 2 не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН к прямой а (рис. 4, в). На прямой b от точки В отложим отрезок ВН1 равный отрезку AH, как показано на рисунке 4, в, и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними (АО=ВО. АН=ВН1 ∠1=∠2), поэтому ∠3=∠4 и ∠15=∠16. Из равенства ∠3=∠4 следует, что точка Н1 лежит на продолжении луча ОН, т. е. точки Н, О и Н1 лежат на одной прямой, а из равенства ∠5=∠6 следует, что угол 6 — прямой (так как угол 5 — прямой). Значит, прямые а и b перпендикулярны к прямой НН1 поэтому они параллельны. Теорема доказана.


25102010 3.jpg

Теорема.Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Доказательство.Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1=2 (рис. 5). Так как углы 2 и 3 - вертикальные, то ∠2=∠3. Из этих двух равенств следует, что ∠1=∠3. Но углы 1 и 3 — накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема.Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.

Доказательство.Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1+∠4=180° (см. рис. 5). Так как углы 3 и 4 — смежные, то ∠3+∠4=180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.


25102010 4.jpg

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертежного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертежный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьемся того, чтобы точ ка М оказалась на стороне угольника, и проведем прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами альфа и бета, равны.


25102010 5.jpg

Еще есть способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертежной практике.

Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скрепленные шарниром).




Интересный факт

Особое место в истории математики занимает пятый постулат Евклида (аксиома о параллельных прямых). Долгое время математики безуспешно пытались вывести пятый постулат из остальных постулатов Евклида и лишь в середине XIX века благодаря исследованиям Н. И. Лобачевского, Б. Римана и Я. Бойяи стало ясно, что пятый постулат не может быть выведен из остальных, а система аксиом, предложенная Евклидом, не единственно возможная.

Аксиома параллельных прямых

Еще древние греки придумали простой способ: как провести циркулем и линейкой через точку А, лежащую вне данной прямой l, другую прямую m, не пересекающую прямую l. Но единственно ли решение этой задачи? Или через точку А можно провести несколько разных прямых, не пересекающих исходную прямую m?

Евклид, видимо, первый среди эллинов понял, что ответ на этот вопрос нельзя получить, исходя из прочих свойств прямых и точек – тех, которые он сформулировал в виде аксиом и постулатов. Нужно ввести дополнительный постулат о единственности искомой прямой m – и назвать эту прямую параллельной!

А возможны ли иные формулировки постулата о параллельных прямых – не совместимые с постулатом Евклида? Например, можно предположить существование нескольких разных прямых, не пересекающих данную прямую l и проходящих через общую точку А. Приведет ли такое предположение к логическому противоречию или нет? Если нет, то возможны иные геометрии, кроме евклидовой!

Первую неевклидову геометрию изобрели в 1820-е годы сразу три талантливых математика: немец Карл Гаусс, русский Николай Лобачевский и венгр Янош Бойяи. Русский математик оказался самым смелым и упорным из троих открывателей. Он первый опубликовал свою книгу с предсказанием замечательных свойств неевклидовых фигур. Например, на плоскости Лобачевского сумма внутренних углов треугольника всегда меньше 180 градусов. Она принимает разные значения для разных треугольников; при этом два подобных треугольника обязательно равны!

В конце 19 века геометры Клейн и Пуанкаре изобрели довольно простые модели поверхностей, на которых воплощается геометрия Лобачевского. Еще раньше Риман заметил, что на обычной сфере воплощена третья возможная геометрия (проективная): в ней «параллельных» прямых вовсе нет, а сумма внутренних углов треугольника всегда больше, чем 180 градусов.

До начала 20 века считалось, что неевклидовы геометрии могут быть полезны только внутри математической науки. Но в 1910-е годы Эйнштейн создал Общую Теорию Относительности: она оказалась четырехмерным воплощением неевклидовой геометрии Лобачевского. С тех пор физики верят, что каждая непротиворечивая математическая конструкция воплощена где-нибудь в Природе. Возможно, что так оно и есть.




Историческая справка

В древние века, буквально 2500 лет назад, в известной школе Пифагора греческое слово «параллелос» начали употреблять, как геометрический термин, хотя определения параллельных прямых в те времена еще не знали. Но исторические факты говорят о том, что древнегреческий ученый Евклид в третьем веке до нашей эры, в своих книгах все же, раскрыл смысл такого понятия, как параллельные прямые.

Как вам уже известно, из пройденного материала в предыдущих классах, термин «параллелос» в переводе с греческого языка обозначает рядом идущий или проведенный друг возле друга.

В математике для обозначения параллельных прямых существует специальный знак. Правда, не всегда знак параллельности имел теперешний вид. Так, например, древнегреческий математик Папп в третьем веке нашей эры для обозначения параллельности пользовался знаком равно «=». И лишь в восемнадцатом веке, благодаря Уильяму Оутреду для обозначения параллельных прямых, стали использовать знак «//». Если есть, например, параллельные а и в, то на письме их следует записывать, как а//в

А вот знак «=» во всеобщее обращение ввел Рекорд и его стали использовать, как знак равенства.

Параллельные прямые в быту и повседневной жизни


параллель

С параллельными прямыми мы часто встречаемся в окружающей нас жизни, хотя, как правило, редко на этом акцентируем свое внимание. На уроках музыки, открывая нотную тетрадь, сразу же невооруженным взглядом мы видим линии нотного стана. Но параллельные линии вы можете увидеть не только в нотных тетрадях и сборниках песен, но и если внимательно присмотритесь к музыкальным инструментам. Ведь струны гитары, арфы или органа также расположены параллельно.

Подняв на улице глаза вверх, вы видите параллельно проходящие электрические провода. Оказавшись в метро или на железной дороге, также не сложно заметить, что рельсы расположены параллельно друг к другу.

Параллельные линии можно встретить повсюду. Они нам постоянно встречаются в быту, живописи. Без них не обойтись и в архитектуре, так как в строительстве зданий строго учитывается понятие параллельности.


параллель

Если вы внимательно посмотрите на изображение, то сразу же заметите в этих архитектурных сооружениях присутствие параллельных прямых. Возможно, они служат так долго и остаются красивыми благодаря тому, что архитекторы и инженеры при создании этих культовых зданий использовали параллельные прямые.

А задумывались ли вы когда-нибудь над тем, почему в линиях электропередач, провода располагаются параллельно? И представьте себе, чтобы было, если бы они не были бы параллельными и пересекались или соприкасались друг с другом. А это привело бы к нехорошим последствиям, при которых могло произойти замыкание, перебоям и отсутствию электричества. А что могло произойти с поездом, если бы рельсы не были бы параллельными? Об этом даже страшно подумать.


параллель

Вам всем хорошо известно, что параллельные прямые никогда не пересекаются. Но если вы долго будете смотреть вдаль, в бесконечность, то в итоге можете увидеть, как параллельные прямые пересекаются. В этом случае мы с вами столкнулись с иллюзией зрения. Может быть, только благодаря таким иллюзиям и зрительным искажениям и появилась живопись.


параллель


параллель

Домашнее задание

1. Назовите свои примеры, где вы в повседневной жизни, в быту или в природе сталкиваетесь с моментами или фактами параллельности.
2. Какие вы знаете способы, благодаря которым можно начертить параллельные прямые? Назовите эти способы.
3. Начертите параллельные прямые в тетради, способами, которые вам известны.
4. При каких условиях прямые, можно назвать параллельными?

Вопросы:

1. Какие прямые называются параллельными?
2. Какие практические способы построения параллельных прямых существуют.?

Предмети > Математика > Математика 7 класс