KNOWLEDGE HYPERMARKET


Логарифмические уравнения
Строка 1: Строка 1:
-
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс,  урок, на Тему, Логарифмические уравнения</metakeywords>  
+
<metakeywords>Гипермаркет Знаний - первый в мире!, Гипермаркет Знаний, Математика, 10 класс,  урок, на Тему, Логарифмические уравнения, корни, логарифм, неравенства</metakeywords>  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 10 класс|Математика 10 класс]]&gt;&gt; Логарифмические уравнения'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]&gt;&gt;[[Математика|Математика]]&gt;&gt;[[Математика 10 класс|Математика 10 класс]]&gt;&gt; Логарифмические уравнения'''  
Строка 5: Строка 5:
<br>  
<br>  
-
'''§ 51. Логарифмические уравнения'''<br>
+
'''§ 51. Логарифмические уравнения'''<br>  
-
<br>Логарифмическими уравнениями называют уравнения вида<br>
+
<br>Логарифмическими уравнениями называют уравнения вида<br>  
-
[[Image:A10194.jpg|320px|Задание]]<br>где а — положительное число, отличное от 1, и уравнения, сводящиеся к этому виду.<br>Опираясь на теорему 4 из § 50, согласно которой равенство<br>
+
[[Image:A10194.jpg|320px|Задание]]<br>где а — положительное число, отличное от 1, и '''[[Тригонометрические уравнения|уравнения]]''', сводящиеся к этому виду.<br>Опираясь на теорему 4 из § 50, согласно которой равенство<br>  
-
[[Image:A10195.jpg|320px|Задание]] <br>
+
[[Image:A10195.jpg|320px|Задание]] <br>  
справедливо тогда и только тогда, когда 1=8, мы можем сформулировать следующее утверждение.<br>  
справедливо тогда и только тогда, когда 1=8, мы можем сформулировать следующее утверждение.<br>  
Строка 17: Строка 17:
[[Image:A10196.jpg|480px|Теорема]]  
[[Image:A10196.jpg|480px|Теорема]]  
-
На практике эту теорему применяют так: переходят от уравнения (1) к уравнению f(х) = g(х) (такой переход называют потенцированием), решают уравнение f(х)= g(х), а затем проверяют его корни по условиям f(х) &gt;0, g(х) &gt;0, определяющим область допустимых значений переменной (ОДЗ). Те корни уравнения f(х) = g(х), которые удовлетворяют этим условиям, являются корнями уравнения (1). Те корни уравнения f(х) =g(х), которые не удовлетворяют хотя бы одному из этих условий, объявляются посторонними корнями для уравнения (1).<br>
+
На практике эту теорему применяют так: переходят от уравнения (1) к уравнению f(х) = g(х) (такой переход называют потенцированием), решают уравнение f(х)= g(х), а затем проверяют его '''[[Степени и корни. Степенные функции. Основные результаты|корни]]''' по условиям f(х) &gt;0, g(х) &gt;0, определяющим область допустимых значений переменной (ОДЗ). Те корни уравнения f(х) = g(х), которые удовлетворяют этим условиям, являются корнями уравнения (1). Те корни уравнения f(х) =g(х), которые не удовлетворяют хотя бы одному из этих условий, объявляются посторонними корнями для уравнения (1).<br>  
-
'''Пример 1'''. Решить уравнение:<br>
+
'''Пример 1'''. Решить уравнение:<br>  
-
[[Image:A10197.jpg|320px|Задание]]<br>
+
[[Image:A10197.jpg|320px|Задание]]<br>  
-
'''Решение'''.1) Потенцируя (т.е. освободившись от знаков логарифмов), получаем:  
+
'''Решение'''.1) Потенцируя (т.е. освободившись от знаков '''[[Презентація уроку: Логарифм числа. Основна логарифмічна тотожність.|логарифмов]]'''
 +
), получаем:  
[[Image:A10198.jpg|180px|Задание]]  
[[Image:A10198.jpg|180px|Задание]]  
Строка 29: Строка 30:
2) Проверим наиденные корни по условиям:  
2) Проверим наиденные корни по условиям:  
-
[[Image:A10199.jpg|120px|Задание]]<br>
+
[[Image:A10199.jpg|120px|Задание]]<br>  
-
<br>Значение x = 4 не удовлетворяет этой системе неравенств (достаточно заметить, что x = 4 не удовлетворяет второму неравенству системы), т.е. x = 4 — посторонний корень для заданного уравнения. Значение x =-3 удовлетворяет обоим неравенствам системы, а потому х = —3 — корень заданного уравнения.<br>
+
<br>Значение x = 4 не удовлетворяет этой системе '''[[Показательные неравенства|неравенств]]''' (достаточно заметить, что x = 4 не удовлетворяет второму неравенству системы), т.е. x = 4 — посторонний корень для заданного уравнения. Значение x =-3 удовлетворяет обоим неравенствам системы, а потому х = —3 — корень заданного уравнения.<br>  
-
Ответ: х = -3.<br>
+
Ответ: х = -3.<br>  
<br>'''Пример 2.''' Решить уравнение:  
<br>'''Пример 2.''' Решить уравнение:  
-
[[Image:A10200.jpg|320px|Задание]]<br>
+
[[Image:A10200.jpg|320px|Задание]]<br>  
'''Решение'''. 1) Сначала надо преобразовать уравнение к виду (1). Для этого воспользуемся правилом: «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение log<sub>2</sub>(х + 4)+ log<sub>2</sub>(2x + 3) выражением log<sup>2</sup>(х + 4)(2x: + 3). Тогда заданное уравнение можно переписать в виде:  
'''Решение'''. 1) Сначала надо преобразовать уравнение к виду (1). Для этого воспользуемся правилом: «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение log<sub>2</sub>(х + 4)+ log<sub>2</sub>(2x + 3) выражением log<sup>2</sup>(х + 4)(2x: + 3). Тогда заданное уравнение можно переписать в виде:  
-
[[Image:A10201.jpg|320px|Задание]]<br>
+
[[Image:A10201.jpg|320px|Задание]]<br>  
2) Потенцируя, получаем:  
2) Потенцируя, получаем:  
-
[[Image:A101202.jpg|180px|Задание]]<br>
+
[[Image:A101202.jpg|180px|Задание]]<br>  
3) Проверим найденные корни по условиям:  
3) Проверим найденные корни по условиям:  
Строка 51: Строка 52:
[[Image:A10203.jpg|120px|Задание]]  
[[Image:A10203.jpg|120px|Задание]]  
-
(обратите внимание: условия для проверки всегда определяют по заданному уравнению). Значение x = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет (это посторонний корень).<br>Ответ: х = -1.<br>
+
(обратите внимание: условия для проверки всегда определяют по заданному уравнению). Значение x = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет (это посторонний корень).<br>Ответ: х = -1.<br>  
-
'''Замечание.''' Иногда удобнее использовать другой порядок ходов: сначала решить систему неравенств — в примере 2 решением системы неравенств будет интервал (-1,5, 0,5); это — область допустимых значений переменной (ОДЗ) или область определения уравнения. Затем найти корни x<sub>1</sub> = -1, х<sub>2</sub> = -5,5. И, наконец, сделать проверку найденных значений х, но уже не с помощью системы неравенств, а по найденной заранее области допустимых значений. В примере 2 значение x = -1 принадлежит интервалу (-1,5, 0,5), а значение x = -5,5 этому интервалу не принадлежит. Следовательно, х = -5,5 — посторонний корень, т.е. x = -1 — единственный корень заданного логарифмического уравнения.<br>
+
'''Замечание.''' Иногда удобнее использовать другой порядок ходов: сначала решить систему неравенств — в примере 2 решением системы неравенств будет интервал (-1,5, 0,5); это — область допустимых значений переменной (ОДЗ) или область определения уравнения. Затем найти корни x<sub>1</sub> = -1, х<sub>2</sub> = -5,5. И, наконец, сделать проверку найденных значений х, но уже не с помощью системы неравенств, а по найденной заранее области допустимых значений. В примере 2 значение x = -1 принадлежит интервалу (-1,5, 0,5), а значение x = -5,5 этому интервалу не принадлежит. Следовательно, х = -5,5 — посторонний корень, т.е. x = -1 — единственный корень заданного логарифмического уравнения.<br>  
'''Пример 3'''. Решить уравнение:  
'''Пример 3'''. Решить уравнение:  
Строка 59: Строка 60:
[[Image:A10204.jpg|180px|Задание]]  
[[Image:A10204.jpg|180px|Задание]]  
-
'''Решение'''. <br>
+
'''Решение'''. <br>  
-
Так как<br>
+
Так как<br>  
-
[[Image:A10205.jpg|180px|Задание]]<br>
+
[[Image:A10205.jpg|180px|Задание]]<br>  
-
то заданное уравнение можно переписать в виде<br>
+
то заданное уравнение можно переписать в виде<br>  
[[Image:A10206.jpg|180px|Задание]]<br>Есть смысл ввести новую переменную y = lg х; тогда уравнение примет вид  
[[Image:A10206.jpg|180px|Задание]]<br>Есть смысл ввести новую переменную y = lg х; тогда уравнение примет вид  
Строка 71: Строка 72:
[[Image:A10207.jpg|180px|Задание]]  
[[Image:A10207.jpg|180px|Задание]]  
-
Это значение удовлетворяет условию [[Image:A10208.jpg]] (посмотрите: у записанного выше рационального относительно у уравнения переменная содержится в знаменателе, а потому следует проверить, не обращается ли знаменатель в 0 при найденном значении переменной у).<br>
+
Это значение удовлетворяет условию [[Image:A10208.jpg]] (посмотрите: у записанного выше рационального относительно у уравнения переменная содержится в знаменателе, а потому следует проверить, не обращается ли знаменатель в 0 при найденном значении переменной у).<br>  
-
Итак, у = 2. Но у = lg х, значит, нам осталось решить простейшее логарифмическое уравнение lg х = 2, откуда находим х = 100.<br>
+
Итак, у = 2. Но у = lg х, значит, нам осталось решить простейшее логарифмическое уравнение lg х = 2, откуда находим х = 100.<br>  
-
Ответ: х = 100.<br>
+
Ответ: х = 100.<br>  
-
<br>Подведем некоторые итоги. Можно выделить три основных метода решения логарифмических уравнений.<br>1) Функционально-графический метод. Он основан на использовании графических иллюстраций или каких-либо свойств функций. Мы применяли этот метод в § 49.<br>
+
<br>Подведем некоторые итоги. Можно выделить три основных метода решения логарифмических уравнений.<br>1) Функционально-графический метод. Он основан на использовании графических иллюстраций или каких-либо свойств функций. Мы применяли этот метод в § 49.<br>  
-
2)Методпотенцирования.&nbsp; Он основан на теореме, полученной в начале параграфа. Мы применили этот метод в примерах 1 и 2.<br>
+
2)Методпотенцирования.&nbsp; Он основан на теореме, полученной в начале параграфа. Мы применили этот метод в примерах 1 и 2.<br>  
-
3)&nbsp;&nbsp;&nbsp; Метод введения новой переменной. Мы применили этот метод в примере 3.<br>
+
3)&nbsp;&nbsp;&nbsp; Метод введения новой переменной. Мы применили этот метод в примере 3.<br>  
-
Завершая параграф, рассмотрим пример, в котором для решения уравнения используется еще один метод — метод логарифмирования, и пример решения системы логарифмических уравнений.<br>
+
Завершая параграф, рассмотрим пример, в котором для решения уравнения используется еще один метод — метод логарифмирования, и пример решения системы логарифмических уравнений.<br>  
-
<br>'''Пример 4.''' Решить уравнение <br>
+
<br>'''Пример 4.''' Решить уравнение <br>  
-
[[Image:A10209.jpg|690px|Задание]]'''Решение.''' Возьмем от обеих частей уравнения логарифмы по основанию 5; зто — равносильное преобразование уравнения, поскольку обе его части принимают только положительные значения. Получим: <br>
+
[[Image:A10209.jpg|690px|Задание]]'''Решение.''' Возьмем от обеих частей уравнения логарифмы по основанию 5; зто — равносильное преобразование уравнения, поскольку обе его части принимают только положительные значения. Получим: <br>  
[[Image:A10210.jpg|690px|Задание]]<br>позволит переписать заданное уравнение в виде: (l - log<sub>5</sub>x) ■ log<sub>5</sub> х = -2. Замечаем, что «проявилась» новая переменная у = log<sub>5</sub> х, относительно которой уравнение принимает весьма простой вид: (1 - у)у = -2. Далее получаем:  
[[Image:A10210.jpg|690px|Задание]]<br>позволит переписать заданное уравнение в виде: (l - log<sub>5</sub>x) ■ log<sub>5</sub> х = -2. Замечаем, что «проявилась» новая переменная у = log<sub>5</sub> х, относительно которой уравнение принимает весьма простой вид: (1 - у)у = -2. Далее получаем:  
-
[[Image:A10211.jpg|180px|Задание]]<br>Но у = log<sub>5</sub> х, значит, нам осталось решить два уравнения:<br>
+
[[Image:A10211.jpg|180px|Задание]]<br>Но у = log<sub>5</sub> х, значит, нам осталось решить два уравнения:<br>  
log<sub>5</sub> x=2, log<sub>5</sub> x=-1. Из первого уравнения находим х = 5', т.е. х = 25; из второго уравнения находим x =5 , т.е.  
log<sub>5</sub> x=2, log<sub>5</sub> x=-1. Из первого уравнения находим х = 5', т.е. х = 25; из второго уравнения находим x =5 , т.е.  
Строка 99: Строка 100:
'''Пример 5.''' Решить систему уравнений  
'''Пример 5.''' Решить систему уравнений  
-
[[Image:A10213.jpg|240px|Задание]]<br>
+
[[Image:A10213.jpg|240px|Задание]]<br>  
<br>'''Решение.''' 1) Преобразуем первое уравнение системы к более простому виду:  
<br>'''Решение.''' 1) Преобразуем первое уравнение системы к более простому виду:  
Строка 107: Строка 108:
[[Image:A10215.jpg|180px|Задание]]<br>3)&nbsp;&nbsp;&nbsp; Решим полученную систему уравнений:  
[[Image:A10215.jpg|180px|Задание]]<br>3)&nbsp;&nbsp;&nbsp; Решим полученную систему уравнений:  
-
[[Image:A10216.jpg|120px|Задание]]<br>Подставив 2у вместо х во второе уравнение, получим <br>
+
[[Image:A10216.jpg|120px|Задание]]<br>Подставив 2у вместо х во второе уравнение, получим <br>  
[[Image:A10217.jpg|480px|Задание]]<br>Соответственно из соотношения х = 2у находим х<sub>2</sub> = 4, х<sub>2</sub> = -2. 4) Осталось сделать проверку найденных пар (4; 2) и (-2; -1) с помощью условий, которые мы определяем, анализируя исходную систему уравнений:  
[[Image:A10217.jpg|480px|Задание]]<br>Соответственно из соотношения х = 2у находим х<sub>2</sub> = 4, х<sub>2</sub> = -2. 4) Осталось сделать проверку найденных пар (4; 2) и (-2; -1) с помощью условий, которые мы определяем, анализируя исходную систему уравнений:  
Строка 117: Строка 118:
<br>  
<br>  
-
''А.Г. Мордкович Алгебра 10 класс''
+
''А.Г. Мордкович Алгебра 10 класс''  
<br>  
<br>  

Версия 19:32, 6 августа 2012

Гипермаркет знаний>>Математика>>Математика 10 класс>> Логарифмические уравнения


§ 51. Логарифмические уравнения


Логарифмическими уравнениями называют уравнения вида

Задание
где а — положительное число, отличное от 1, и уравнения, сводящиеся к этому виду.
Опираясь на теорему 4 из § 50, согласно которой равенство

Задание

справедливо тогда и только тогда, когда 1=8, мы можем сформулировать следующее утверждение.

Теорема

На практике эту теорему применяют так: переходят от уравнения (1) к уравнению f(х) = g(х) (такой переход называют потенцированием), решают уравнение f(х)= g(х), а затем проверяют его корни по условиям f(х) >0, g(х) >0, определяющим область допустимых значений переменной (ОДЗ). Те корни уравнения f(х) = g(х), которые удовлетворяют этим условиям, являются корнями уравнения (1). Те корни уравнения f(х) =g(х), которые не удовлетворяют хотя бы одному из этих условий, объявляются посторонними корнями для уравнения (1).

Пример 1. Решить уравнение:

Задание

Решение.1) Потенцируя (т.е. освободившись от знаков логарифмов ), получаем:

Задание

2) Проверим наиденные корни по условиям:

Задание


Значение x = 4 не удовлетворяет этой системе неравенств (достаточно заметить, что x = 4 не удовлетворяет второму неравенству системы), т.е. x = 4 — посторонний корень для заданного уравнения. Значение x =-3 удовлетворяет обоим неравенствам системы, а потому х = —3 — корень заданного уравнения.

Ответ: х = -3.


Пример 2. Решить уравнение:

Задание

Решение. 1) Сначала надо преобразовать уравнение к виду (1). Для этого воспользуемся правилом: «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение log2(х + 4)+ log2(2x + 3) выражением log2(х + 4)(2x: + 3). Тогда заданное уравнение можно переписать в виде:

Задание

2) Потенцируя, получаем:

Задание

3) Проверим найденные корни по условиям:

Задание

(обратите внимание: условия для проверки всегда определяют по заданному уравнению). Значение x = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет (это посторонний корень).
Ответ: х = -1.

Замечание. Иногда удобнее использовать другой порядок ходов: сначала решить систему неравенств — в примере 2 решением системы неравенств будет интервал (-1,5, 0,5); это — область допустимых значений переменной (ОДЗ) или область определения уравнения. Затем найти корни x1 = -1, х2 = -5,5. И, наконец, сделать проверку найденных значений х, но уже не с помощью системы неравенств, а по найденной заранее области допустимых значений. В примере 2 значение x = -1 принадлежит интервалу (-1,5, 0,5), а значение x = -5,5 этому интервалу не принадлежит. Следовательно, х = -5,5 — посторонний корень, т.е. x = -1 — единственный корень заданного логарифмического уравнения.

Пример 3. Решить уравнение:

Задание

Решение.

Так как

Задание

то заданное уравнение можно переписать в виде

Задание
Есть смысл ввести новую переменную y = lg х; тогда уравнение примет вид

Задание

Это значение удовлетворяет условию A10208.jpg (посмотрите: у записанного выше рационального относительно у уравнения переменная содержится в знаменателе, а потому следует проверить, не обращается ли знаменатель в 0 при найденном значении переменной у).

Итак, у = 2. Но у = lg х, значит, нам осталось решить простейшее логарифмическое уравнение lg х = 2, откуда находим х = 100.

Ответ: х = 100.


Подведем некоторые итоги. Можно выделить три основных метода решения логарифмических уравнений.
1) Функционально-графический метод. Он основан на использовании графических иллюстраций или каких-либо свойств функций. Мы применяли этот метод в § 49.

2)Методпотенцирования.  Он основан на теореме, полученной в начале параграфа. Мы применили этот метод в примерах 1 и 2.

3)    Метод введения новой переменной. Мы применили этот метод в примере 3.

Завершая параграф, рассмотрим пример, в котором для решения уравнения используется еще один метод — метод логарифмирования, и пример решения системы логарифмических уравнений.


Пример 4. Решить уравнение

ЗаданиеРешение. Возьмем от обеих частей уравнения логарифмы по основанию 5; зто — равносильное преобразование уравнения, поскольку обе его части принимают только положительные значения. Получим:

Задание
позволит переписать заданное уравнение в виде: (l - log5x) ■ log5 х = -2. Замечаем, что «проявилась» новая переменная у = log5 х, относительно которой уравнение принимает весьма простой вид: (1 - у)у = -2. Далее получаем:

Задание
Но у = log5 х, значит, нам осталось решить два уравнения:

log5 x=2, log5 x=-1. Из первого уравнения находим х = 5', т.е. х = 25; из второго уравнения находим x =5 , т.е.

Задание

Пример 5. Решить систему уравнений

Задание


Решение. 1) Преобразуем первое уравнение системы к более простому виду:

Задание
2)    Преобразуем второе уравнение системы к более простому виду:

Задание
3)    Решим полученную систему уравнений:

Задание
Подставив 2у вместо х во второе уравнение, получим

Задание
Соответственно из соотношения х = 2у находим х2 = 4, х2 = -2. 4) Осталось сделать проверку найденных пар (4; 2) и (-2; -1) с помощью условий, которые мы определяем, анализируя исходную систему уравнений:

Задание
Пара (4; 2) удовлетворяет этим условиям, а пара (-2; -1) не удовлетворяет (например, она «не проходит» уже через первое условие 2х -у> 0).

Ответ: (4; 2).


А.Г. Мордкович Алгебра 10 класс


Видео по математике скачать, домашнее задание, учителям и школьникам на помощь онлайн

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.