KNOWLEDGE HYPERMARKET


Двоичная система счисления

Гипермаркет знаний>>Информатика>>Информатика 9 класс>>Информатика: Двоичная система счисления

Содержание

План урока

Здесь вы узнаете:

♦ как компьютер работает с числами;
♦ что такое электронная таблица;
♦ как решаются вычислительные задачи;    
♦ с помощью электронных таблиц;
♦ как можно использовать электронные таблицы для информационного моделирования.

Двоичная система счисления

Основные темы параграфа:

♦ десятичная и двоичная системы счисления;
♦ развернутая форма записи числа;
♦ перевод двоичных чисел в десятичную систему;
♦ перевод десятичных чисел в двоичную систему;
♦ арифметика двоичных чисел.

В данной главе речь пойдет об организации вычислений на компьютере. Вычисления связаны с хранением и обработкой чисел.

Компьютер работает с числами в двоичной системе счисления.

Эта идея принадлежит Джону фон Нейману, сформулировавшему в 1946 году принципы устройства и работы ЭВМ. Выясним, что такое система счисления.

Десятичная и двоичная системы счисления

Системой счисления или в сокращенном варианте СС называют такую систему записи чисел, которая имеет определенный набор цифр.

Об истории различных систем счисления вы узнали, когда изучали 7 главу учебника. А сегодня мы с вами обратим наше внимание на такие системы счисления, как двоичная и десятичная СС.

Как вам уже известно из изученного ранее материала, что одной из наиболее часто применяемых систем счисления является десятичная СС. А называется эта система так потому, что в основе этого словообразования есть число 10. Вот поэтому и система счисления называется десятичной.

Вы уже знаете, что в этой системе используют такие десять цифр, как 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. А вот числу десять отведена исключительная роль, так как на наших руках насчитывается десять пальцев. То есть, десять цифр являются основанием данной системы счисления.

А вот в двоичной системе счисления, задействованные только две цифры, такие, как 0 и 1 и основанием этой системы является число 2.

Теперь давайте попробуем разобраться, как с помощью всего лишь двух цифр представить какую-то величину.

Развернутая форма записи числа

Давайте обратимся к своей памяти и вспомним, какой в десятичной СС существует принцип записи чисел. То есть, для вас уже не будет секретом, что в такой СС запись числа зависит от места расположения цифры, то есть, от ее позиции.

Так, например, цифра, которая является крайней справа, говорит нам о количестве единиц этого числа, следующая за этой цифрой, как правило, указывает на количество двоек и т.д.

Если мы с вами, например, возьмем такое число, как 333, то увидим, что крайняя правая цифра обозначает три единицы, потом три десятка и за ней – три сотни.

Теперь это изобразим в виде такого равенства:


двоичная сист.

Здесь мы видим равенство, в котором выражение, расположенное с правой стороны от знака равно, предоставлено в виде развернутой формы записи этого многозначного числа.

Рассмотрим еще один пример многозначного десятичного числа, который также представлен в развернутой форме:


двоичная сист.

Эти примеры нам показывают, что чем дальше мы движемся от цифры к цифре справа налево, то каждая цифра увеличивается в десять раз. А происходит это потому, что основание СС равно десяти.

Перевод двоичных чисел в десятичную систему

Теперь давайте для примера возьмем такое многозначительное двоичное число, как:


двоичная сист.

В этом многозначительном числе мы видим с правой стороны внизу двойку, которая нам указывает на основание системы счисления. То есть, нам понятно, что перед нами двоичное число и перепутать его с десятичным, мы уже не можем.

И значение каждой следующей цифры в двоичном числе возрастает в 2 раза при каждом шаге справа налево. Теперь давайте посмотрим, как будет выглядеть развернутая форма записи этого двоичного числа:


двоичная сист.

На этом примере мы видим, как можно перевести перевели двоичное число в десятичную систему.

Теперь давайте еще приведем несколько примеров перевода двоичных чисел в десятичную систему счисления:


двоичная сист.

Это пример нам показывает то, что двузначному десятичному числу, в данном случае, соответствует шестизначное двоичное. Для двоичной системы характерно такое возрастание количества цифр при увеличении значения числа.

А теперь давайте посмотрим, как будет выглядеть начало натурального ряда чисел в десятичной (А10) и двоичной (А2) СС:


двоичная сист.

Перевод десятичных чисел в двоичную систему

Рассмотрев приведенные примеры выше, надеюсь вам теперь понятно, как происходит перевод двоичного числа в равное десятичное число. Ну, а теперь давайте попробуем сделать обратный перевод. Смотрим, что нам для этого необходимо сделать. Нам для такого перевода необходимо попробовать разложить десятичное число на слагаемые, которые представляют собой степени двойки. Приведем такой пример:


двоичная сист.

Как видим, это сделать не так уж и просто. Давайте попробуем рассмотреть другой, более простой метод перевода из десятичной СС в двоичную. Такой метод состоит в том, что известное десятичное число, как правило, делиться на два, а его полученный остаток и будет выступать младшим разрядом искомого числа. Это, вновь полученное число мы снова делим на два и получаем следующий разряд искомого числа. Такой процесс деления мы будем продолжать до тех пор, пока частное не станет меньше основания двоичной системы, то есть, меньше двойки. Вот такое полученное частное и будет старшей цифрой числа, которое мы искали.

Давайте теперь рассмотрим методы записи деления на число два. Для примера возьмем число 37 и попробуем его перевести в двоичную систему.


двоичная сист.

На данных примерах мы видим, что а5, а4, а3, а2, а1, а0 являются обозначением цифр в записи двоичного числа, которые осуществляются по порядку слева направо. В итоге мы с вами получим:


двоичная сист.

Арифметика двоичных чисел

Если исходить из правил в арифметике, то легко заметить, что в двоичной системе счислений, они намного проще, чем в десятичной.

Теперь давайте вспомним варианты сложения и умножения однозначных двоичных чисел.


двоичная сист.

Благодаря такой простоте, которая легко согласовывается с битовой структурой компьютерной памяти, двоичная система счисления привлекла внимание создателей компьютера.

Обратите внимание на то, как выполняется пример сложения двух многозначных двоичных чисел при помощи столбика:


двоичная сист.

А вот перед вами пример умножения многозначных двоичных чисел в столбик:


двоичная сист.

Вы заметили, как легко и просто выполнять такие примеры.

Коротко о главном

Система счисления — определенные правила записи чисел и связанные с этими правилами способы выполнения вычислений.

Основание системы счисления равно количеству используемых в ней цифр.

Двоичные числа — числа в двоичной системе счисления. В их записи используются две цифры: 0 и 1.

Развернутая форма записи двоичного числа — это его представление в виде суммы степеней двойки, умноженных на 0 или на 1.

Использование двоичных чисел в компьютере связано с битовой структурой компьютерной памяти и простотой двоичной арифметики.

Достоинства двоичной системы счисления

А теперь давайте рассмотрим, какими достоинствами обладает двоичная система исчисления:

• Во-первых, достоинством двоичной системы счисления является то, что с ее помощью довольно таки просто осуществлять процессы хранения, передачи и обработки информации на компьютере.
• Во-вторых, для ее выполнения достаточно не десять элементов, а лишь два;
• В-третьих, отображение информации с помощью лишь двух состояний, это надежнее и более устойчиво к различным помехам;
• В-четвертых, есть возможность использования алгебры логики для осуществления логических преобразований;
• В-пятых, двоичная арифметика все же проще десятичной, поэтому является более удобной.

Недостатки двоичной системы счисления

Двоичная система счисления менее удобна, так как человек привык больше пользоваться десятичной системой, которая намного короче. А вот, в двоичной системе большие числа имеет довольно таки большое число разрядов, что и является ее существенным недостатком.

Почему двоичная система счисления так распространена?

Популярной двоичная система счисления является потому, что это язык вычислительной техники, где каждая цифра должна быть каким-то образом представлена на физическом носителе.

Ведь проще иметь два состояния при изготовлении физического элемента, чем придумывать устройство, в котором должно присутствовать десять различных состояний. Согласитесь, что это было бы намного сложней.

По сути, это и есть одной из основных причин популярности двоичной системы счисления.

История возникновения двоичной системы счисления

История создания двоичной системы счисления в арифметике, довольно таки яркая и стремительная. Основателем этой системы считают известного немецкого ученого и математика Г. В. Лейбница. Им была опубликована статья, в которой он описал правила, по которым можно было выполнить всевозможные арифметические операции над двоичными числами.

К сожалению, до начала двадцатого века двоичная система счисления была малозаметна в прикладной математике. А после того, как начали появляться простые счетные механические приборы, то ученые стали более активно обращать внимание на двоичную систему счисления и начали ее активно изучать, так как для вычислительных устройств она была удобна и незаменима. Она является той минимальной системой, с помощью которой можно полностью реализовать принцип позиционности в цифровой форме записи чисел.

Вопросы и задания

1. Назовите преимущества и недостатки двоичной системы счисления по сравнению с десятичной.
2. Какие двоичные числа соответствуют следующим десятичным числам:
128; 256; 512; 1024?
3. Чему в десятичной системе равны следующие двоичные числа:
1000001; 10000001; 100000001; 1000000001?
4. Переведите в десятичную систему следующие двоичные числа:
101; 11101; 101010; 100011; 10110111011.
5. Переведите в двоичную систему счисления следующие десятичные числа:
2; 7; 17; 68; 315; 765; 2047.
6. Выполните сложение в двоичной системе счисления:
11 + 1; 111 + 1; 1111 + 1; 11111 + 1.
7. Выполните умножение в двоичной системе счисления:
111 · 10; 111 · 11; 1101 · 101; 1101 · 1000.


И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов