KNOWLEDGE HYPERMARKET


Логарифмические неравенства
Строка 3: Строка 3:
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Логарифмические неравенства'''  
'''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Логарифмические неравенства'''  
-
<br>  
+
<h2>Логарифмические неравенства</h2>
-
'''§ 52. Логарифмические неравенства'''
+
На предыдущих уроках мы с вами изучали логарифмические уравнения и теперь знаем, что это такое и как их решать. А сегодняшний урок будет посвящен изучению логарифмических неравенств. Что же это за такие неравенства и в чем разница между решением логарифмического уравнения и неравенства?
-
<br>Логарифмическими неравенствами называют '''[[Показательные неравенства|неравенства]]''' вида
+
Неравенства, которые имеют переменную, которая стоит под знаком логарифма или в его основании, называются логарифмическими неравенствами.
-
[[Image:A10219.jpg|320px|Задание]]<br>где а — положительное число, отличное от 1, и неравенства, сводящиеся к этому виду.
+
Или же, можно еще сказать, что логарифмическое неравенство – это такое неравенство, в котором его неизвестная величина, так же, как и в логарифмическом уравнении, стоит под знаком логарифма.
-
Для решения неравенства (1) проведем следующие рассуждения: преобразуем неравенство к виду
+
Простейшие логарифмические неравенства имеют такой вид:
-
[[Image:A10220.jpg|480px|Задание]]  
+
<br>
 +
[[Image:10kl_LogNer01.jpg|500x500px|лог.неравенства]]
 +
<br>
-
Теперь следует рассмотреть два случая: а&gt;1 и 0&lt;а&lt;1. Если а &gt; 1, то неравенство log<sub>a</sub> t &gt;0 имеет место тогда и только тогда, когда (см. § 49, рис. 216). Значит,
+
где f(x) и g(x) являются некоторыми выражениями, которые зависят от x.
-
[[Image:A10221.jpg|320px|Задание]]
+
Давайте это рассмотрим на таком примере: f(x)=1+2x+x2, g(x)=3x−1.
-
Если 0 &lt; а &lt; 1, то неравенство log<sub>a</sub> t &gt; 1 имеет место тогда и только тогда, когда 0 &lt;t&lt;1 (см. § 49, рис. 217). Значит,
+
<h2>Решение логарифмических неравенств</h2>
-
[[Image:A10222.jpg|480px|Задание]]
+
Приступая к решению логарифмических неравенств, следует отметить, что они при решении имеют сходство с показательными неравенствами, а именно:
-
Проведенные рассуждения позволяют сформулировать следующее утверждение.
+
• Во-первых, переходя от логарифмов к выражениям, которые стоят под знаком логарифма, нам также необходимо сравнить основание логарифма с единицей;<br>
 +
• Во-вторых, при решении логарифмического неравенства, используя замену переменных, нам необходимо решать неравенства относительно замены до того момента, пока мы не получим простейшее неравенство.<br>
 +
Но это мы с вами рассмотрели сходные моменты в решении логарифмических неравенств. А теперь давайте обратим внимание на довольно таки существенное отличие. Нам с вами известно, что логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, которые стоят под знаком логарифма, поэтому здесь необходимо учитывать область допустимых значений (ОДЗ).
-
[[Image:A10223.jpg|480px|Теорема]]
+
То есть, следует учитывать, что при решении логарифмического уравнения мы в вами, можем сначала найти корни уравнения, а потом сделать проверку этого решения. А вот при решении  логарифмического неравенства так не получится, так как при переходе от логарифмов к выражениям, которые стоят под знаком логарифма, в этом случае нужно записывать ОДЗ неравенства.
-
<br>На практике эту теорему применяют так: переходят от неравенства
+
Так же, не лишним будет запомнить, что теория неравенств состоит из действительных чисел, которыми являются положительные и отрицательные числа, а также и число 0.
-
[[Image:A10224.jpg|240px|Задание]]
+
Например, в том случае, когда число «а» является положительным, то необходимо использовать такую запись: a >0. В этом случае, как сумма, так и произведение таких этих чисел также будут положительными.  
-
к равносильной ему системе неравенств:
+
Основным принципом решения неравенства является его замена на более простое неравенство, но главное, чтобы оно было равносильно данному. Дальше, также мы получили неравенство и снова его заменили на то, которое имеет более простой вид и т.д.
-
[[Image:A10225.jpg|420px|Система неравенств]]
+
При решении неравенств с переменной необходимо найти все его решения. Если два неравенства имеют одну переменную х, то такие неравенства равносильны, при условии, что их решения совпадают.
-
<br>Первые два неравенства каждой из этих систем определяют область допустимых значений переменной для неравенства (1), а знак последнего неравенства каждой из систем (обратите внимание!) либо совпадает со знаком неравенства (1) — в случае, когда а&gt; 1, — либо противоположен знаку неравенства (1) — в случае, когда0 &lt;а &lt;1.
+
Выполняя задания на решение логарифмических неравенств, необходимо запомнить, что если a > 1, то в этом случае логарифмическая функция возрастает, а если 0 < a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.
-
<br>'''Пример 1.''' Решить неравенства:
+
<h2>Способы решения логарифмических неравенств</h2>
-
[[Image:A10226.jpg|480px|Задание]]<br>'''Решение'''. а) Область допустимых значений '''[[Линейное уравнение с двумя переменными и его график|переменной]]''' для заданного неравенства определяется условиями: 2х-4&gt;0 и 14-х&gt;0. Поскольку основанием логарифмов служит число 3, а оно больше 1, то, «освобождаясь» от знаков логарифмов, мы получим неравенство того же смысла:&nbsp; 2х-4&gt;14-х.
+
Теперь, давайте рассмотрим некоторые способы, которые имеют место при решении логарифмических неравенств. Для лучшего понимания и усвоения, попробуем в них разобраться на конкретных примерах.
-
В итоге получаем систему неравенств:  
+
Нам с вами известно, что простейшее логарифмическое неравенство имеет такой вид:
 +
<br>
 +
[[Image:10kl_LogNer01.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
В этом неравенстве V – является одним из таких знаков неравенства, как: <,>, ≤ или ≥.
 +
В том случае, если основание данного логарифма больше единицы (a>1), когда мы будем делать переход от логарифмов к выражениям, которые стоят под знаком логарифма, то в этом варианте знак неравенства сохраняется, и неравенство будет иметь такой вид:
-
[[Image:A10227.jpg|120px|Задание]]
+
<br>
 +
[[Image:10kl_LogNer01.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
что равносильно такой вот системе:
-
<br>Из первого неравенства системы находим х &gt;2, из второго — х &lt;14, из третьего — х &gt;6. Геометрическая модель (рис. 226) помогает найти решение системы неравенств: 6 &lt; х &lt; 14.<br>б) Здесь основание '''[[Презентація уроку: Логарифм числа. Основна логарифмічна тотожність.|логарифма]]''' [[Image:A10228.jpg]] , т.е. число меньше 1. Значит, соответствующая система неравенств имеет вид:
+
<br>
 +
[[Image:10kl_LogNer02.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
В случае же, когда основание логарифма больше нуля и меньше единицы (0<a<1), то в момент преображения от логарифмов к выражениям, которые стоят под знаком логарифма, в этом варианте знак неравенства будет изменен на противоположный, и неравенство приобретет такой вид:
 +
<br>
 +
[[Image:10kl_LogNer01.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Это равносильно данной системе:
-
[[Image:A10229.jpg|480px|Система неравенств]]
+
<br>
 +
[[Image:10kl_LogNer03.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Посмотрим еще примеры решения простейших логарифмических неравенств, которые изображены на картинке внизу:
-
<br>(обратите внимание: знак последнего неравенства системы противоположен знаку исходного логарифмического неравенства).
+
<br>
 +
[[Image:10kl_LogNer04.jpg|500x500px|лог.неравенства]]
 +
<br>
-
Из первого неравенства системы находим х &gt; 2, из второго — х &lt;14, из третьего — х &lt;6. Геометрическая модель (рис. 227) помогает найти решение системы неравенств: 2 &lt; х &lt; 6.
+
<h2>Решение примеров</h2>
-
'''Ответ''': а) 6&lt;х&lt;14; 6) 2 &lt;х &lt;6.
+
'''Задание.''' Давайте попробуем решить такое вот неравенство:
-
<br>'''Замечание.''' Еще раз рассмотрим систему неравенств, которая получилась в примере 1а. Третье неравенство системы имеет вид 2х -4&gt;14-х, а второе —14 - х &gt; 0. Но из этих двух неравенств автоматически (по свойству транзитивности неравенств) следует, что 2х - 4 &gt; 0. Что это значит? Это значит, что первое неравенство системы с самого начала можно было отбросить без всякого ущерба для решения системы.
+
<br>
 +
[[Image:10kl_LogNer05.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Решение области допустимых значений.
-
Рассуждая аналогично, в системе неравенств, которую мы получили в примере 16, можно было с самого начала отбросить второе неравенство.
+
<br>
 +
[[Image:10kl_LogNer06.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Теперь попробуем умножить его правую часть на:
-
Получив систему неравенств, математики обычно смотрят, нет ли в ней неравенства, которое логически следует из других. Если такое неравенство есть, его можно отбросить. Советуем и вам так поступать, но, разумеется, только в том случае, если вы уверены в правильности своих выводов.
+
<br>
 +
[[Image:10kl_LogNer07.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Смотрим, что у нас получится:
-
<br>'''Пример 2'''. Решить неравенство:
+
<br>
 +
[[Image:10kl_LogNer08.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Далее, следуя свойствам логарифмов, возьмем и внесем коэффициент –2, как степень подлогарифмического выражения и в итоге получим:
-
[[Image:A10230.jpg|180px|Задание]]<br>'''Решение.''' Представим -4 в виде логарифма по основанию
+
<br>
 +
[[Image:10kl_LogNer09.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
Теперь, давайте с вами перейдем к преобразованию подлогарифмических выражений. В связи с тем, что основание логарифма 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:
-
[[Image:A10231.jpg|180px|Задание]]&nbsp;  
+
3x - 8 > 16;<br>
 +
3x > 24;<br>
 +
х > 8.<br>
-
Это позволит переписать заданное неравенство в виде:
+
А из этого следует, что интервал, который мы получили, целиком и полностью  принадлежит ОДЗ и является решением такого неравенства.
-
[[Image:A10232.jpg|180px|Задание]]<br>Учитывая, что здесь основанием логарифмов служит число, меньше 1, составляем равносильную заданному неравенству систему неравенств:
+
Вот какой ответ у нас получился:
-
[[Image:A10232.jpg|180px|Задание]]<br>Обратите внимание: если выполняется второе неравенство системы, то автоматически выполняется и первое неравенство (если А &gt; 16, то тем более А &gt;0). Значит, первое неравенство системы можно отбросить. Решая второе неравенство, находим:
+
<br>
 +
[[Image:10kl_LogNer10.jpg|500x500px|лог.неравенства]]
 +
<br>
 +
 +
<h2>Что необходимо для решения логарифмических неравенств?</h2>
 +
А теперь давайте попробуем проанализировать, что нам необходимо для успешного решения логарифмических неравенств?
 +
 +
• Во-первых, сосредоточить все свое внимание и постараться не допускать ошибок при выполнении преобразований, которые даны в этом неравенстве. Также, следует запомнить, что при решении таких неравенств нужно не допускать расширений и сужений ОДЗ неравенства, которые могут привести к потере или приобретению посторонних решений.<br>
 +
• Во-вторых, при решении логарифмических неравенств необходимо научиться мыслить логически и понимать разницу между такими понятиями, как система неравенств и совокупность неравенств, чтобы вы без проблем смогли осуществлять отбор решений неравенства, при этом руководствуясь его ОДЗ.<br>
-
[[Image:A10233.jpg|480px|Задание]]
+
• В-третьих, для успешного решения таких неравенств каждый из вас должен отлично знать все свойства элементарных функций и четко понимать их смысл. К таким функциям относятся не только логарифмические, но и рациональные, степенные, тригонометрические и т.д., одним словом, все те, которые вы изучали на протяжении школьного обучения алгебры.<br> 
 +
Как видите, изучив тему о логарифмических неравенствах, в решении этих неравенств нет ничего сложного при условии, если вы будете внимательны и настойчивы в достижении поставленных целей. Чтобы в решении неравенств не возникало никаких проблем, нужно как можно больше тренироваться, решая различные задания и при этом запоминать основные способы решения таких неравенств и их систем. При неудачных решениях логарифмических неравенств, следует внимательно проанализировать свои ошибки, чтобы в будущем не возвращаться к ним снова.
 +
<h2>Домашнее задание</h2>
-
'''Пример 3.''' Решить неравенство lg х + lg(45-х)&lt;2 +lg2.
+
Для лучшего усвоения темы и закрепления пройденного материала, решите следующие неравенства:  
-
 
+
-
'''Решение.''' Имеем последовательно:
+
-
 
+
-
<br>[[Image:A10234.jpg|320px|Задание]]
+
-
 
+
-
<br>Значит, заданное неравенство можно преобразовать к виду lg(45х - х<sup>2</sup>) &lt; 200.
+
-
 
+
-
«Освобождаясь» от знаков десятичных логарифмов, получим неравенство того же смысла: 45х - х<sup>2</sup> &lt; 200. А условия, задающие область допустимых значений переменной, всегда определяют по исходному неравенству; в данном примере они таковы: х&gt;0 и 45-х&gt;0. В итоге получаем систему неравенств:
+
-
 
+
-
[[Image:A10235.jpg|120px|Задание]]
+
-
 
+
-
Первые два неравенства можно записать в виде двойного неравенства 0 &lt; х &lt; 45. Решая третье неравенство системы, находим:
+
-
 
+
-
[[Image:A10236.jpg|240px|Задание]]<br>Отметив на числовой прямой эти решения совместно с полученным ранее интервалом 0 &lt; х &lt;45, находим их пересечение (рис. 230), т.е. решение составленной выше системы неравенств: 0 &lt; х &lt; 5; 40 &lt; х &lt; 45.
+
-
 
+
-
'''Ответ''':0&lt;х&lt;5; 40&lt;х&lt;45.
+
-
 
+
-
[[Image:A10237.jpg|480px|Задание]]
+
-
 
+
-
<br>'''Пример 4.''' Решить неравенство
+
-
 
+
-
[[Image:A10238.jpg|180px|Задание]]
+
-
 
+
-
'''Решение'''. Здесь «напрашивается» введение новой переменной y =log<sub>2</sub> х, но сначала надо разобраться с выражением [[Image:A10239.jpg]]
+
-
 
+
-
Имеем:
+
-
 
+
-
[[Image:A10240.jpg|480px|Задание]]&nbsp;
+
-
 
+
-
Поняв это, перепишем заданное неравенство в виде
+
-
 
+
-
[[Image:A10241.jpg|120px|Задание]]<br>Найдем корни квадратного трехчлена
+
-
 
+
-
[[Image:A10242.jpg|690px|Задание]]
+
-
 
+
-
Подставив вместо у выражение log<sub>2</sub> х, получим:&nbsp;
+
-
 
+
-
[[Image:A10243.jpg|480px|Задание]]
+
-
 
+
-
Остается «освободиться» от знаков логарифмов, сохранив имеющиеся знаки неравенств:
+
-
 
+
-
[[Image:A10244.jpg|180px|Задание]]
+
-
 
+
-
''<br>''
+
-
 
+
-
''А.Г. Мордкович Алгебра 10 класс''
+
-
 
+
-
<br>
+
-
 
+
-
<br> <br> <sub>Календарно-тематическое планирование по математике, [http://xvatit.com/it/audio_television/ '''видео'''] по математике [[Гипермаркет знаний - первый в мире!|онлайн]], Математика в школе [[Математика|скачать]]</sub>
+
-
 
+
-
'''<u>Содержание урока</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока                      '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии
+
-
+
-
'''<u>Практика</u>'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников
+
-
+
-
'''<u>Иллюстрации</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты
+
-
+
-
'''<u>Дополнения</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов                         
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие
+
-
+
-
<u>Совершенствование учебников и уроков
+
-
</u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике'''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми
+
-
+
-
'''<u>Только для учителей</u>'''
+
-
'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки '''
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации 
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы
+
-
[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения
+
-
+
-
+
-
'''<u>Интегрированные уроки</u>'''<u>
+
-
</u>
+
-
 
+
-
<br>
+
-
 
+
-
Если у вас есть исправления или предложения к данному уроку, [http://xvatit.com/index.php?do=feedback напишите нам].
+
-
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - [http://xvatit.com/forum/ Образовательный форум].
+
<br>
 +
[[Image:10kl_LogNer11.jpg|500x500px|лог.неравенства]]
 +
<br>

Версия 18:36, 26 августа 2015

Гипермаркет знаний>>Математика>>Математика 10 класс>> Логарифмические неравенства

Содержание

Логарифмические неравенства

На предыдущих уроках мы с вами изучали логарифмические уравнения и теперь знаем, что это такое и как их решать. А сегодняшний урок будет посвящен изучению логарифмических неравенств. Что же это за такие неравенства и в чем разница между решением логарифмического уравнения и неравенства?

Неравенства, которые имеют переменную, которая стоит под знаком логарифма или в его основании, называются логарифмическими неравенствами.

Или же, можно еще сказать, что логарифмическое неравенство – это такое неравенство, в котором его неизвестная величина, так же, как и в логарифмическом уравнении, стоит под знаком логарифма.

Простейшие логарифмические неравенства имеют такой вид:


лог.неравенства

где f(x) и g(x) являются некоторыми выражениями, которые зависят от x.

Давайте это рассмотрим на таком примере: f(x)=1+2x+x2, g(x)=3x−1.

Решение логарифмических неравенств

Приступая к решению логарифмических неравенств, следует отметить, что они при решении имеют сходство с показательными неравенствами, а именно:

• Во-первых, переходя от логарифмов к выражениям, которые стоят под знаком логарифма, нам также необходимо сравнить основание логарифма с единицей;

• Во-вторых, при решении логарифмического неравенства, используя замену переменных, нам необходимо решать неравенства относительно замены до того момента, пока мы не получим простейшее неравенство.

Но это мы с вами рассмотрели сходные моменты в решении логарифмических неравенств. А теперь давайте обратим внимание на довольно таки существенное отличие. Нам с вами известно, что логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, которые стоят под знаком логарифма, поэтому здесь необходимо учитывать область допустимых значений (ОДЗ).

То есть, следует учитывать, что при решении логарифмического уравнения мы в вами, можем сначала найти корни уравнения, а потом сделать проверку этого решения. А вот при решении логарифмического неравенства так не получится, так как при переходе от логарифмов к выражениям, которые стоят под знаком логарифма, в этом случае нужно записывать ОДЗ неравенства.

Так же, не лишним будет запомнить, что теория неравенств состоит из действительных чисел, которыми являются положительные и отрицательные числа, а также и число 0.

Например, в том случае, когда число «а» является положительным, то необходимо использовать такую запись: a >0. В этом случае, как сумма, так и произведение таких этих чисел также будут положительными.

Основным принципом решения неравенства является его замена на более простое неравенство, но главное, чтобы оно было равносильно данному. Дальше, также мы получили неравенство и снова его заменили на то, которое имеет более простой вид и т.д.

При решении неравенств с переменной необходимо найти все его решения. Если два неравенства имеют одну переменную х, то такие неравенства равносильны, при условии, что их решения совпадают.

Выполняя задания на решение логарифмических неравенств, необходимо запомнить, что если a > 1, то в этом случае логарифмическая функция возрастает, а если 0 < a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Способы решения логарифмических неравенств

Теперь, давайте рассмотрим некоторые способы, которые имеют место при решении логарифмических неравенств. Для лучшего понимания и усвоения, попробуем в них разобраться на конкретных примерах.

Нам с вами известно, что простейшее логарифмическое неравенство имеет такой вид:


лог.неравенства

В этом неравенстве V – является одним из таких знаков неравенства, как: <,>, ≤ или ≥.

В том случае, если основание данного логарифма больше единицы (a>1), когда мы будем делать переход от логарифмов к выражениям, которые стоят под знаком логарифма, то в этом варианте знак неравенства сохраняется, и неравенство будет иметь такой вид:


лог.неравенства

что равносильно такой вот системе:


лог.неравенства

В случае же, когда основание логарифма больше нуля и меньше единицы (0<a<1), то в момент преображения от логарифмов к выражениям, которые стоят под знаком логарифма, в этом варианте знак неравенства будет изменен на противоположный, и неравенство приобретет такой вид:


лог.неравенства

Это равносильно данной системе:


лог.неравенства

Посмотрим еще примеры решения простейших логарифмических неравенств, которые изображены на картинке внизу:


лог.неравенства

Решение примеров

Задание. Давайте попробуем решить такое вот неравенство:


лог.неравенства

Решение области допустимых значений.


лог.неравенства

Теперь попробуем умножить его правую часть на:


лог.неравенства

Смотрим, что у нас получится:


лог.неравенства

Далее, следуя свойствам логарифмов, возьмем и внесем коэффициент –2, как степень подлогарифмического выражения и в итоге получим:


лог.неравенства

Теперь, давайте с вами перейдем к преобразованию подлогарифмических выражений. В связи с тем, что основание логарифма 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
х > 8.

А из этого следует, что интервал, который мы получили, целиком и полностью принадлежит ОДЗ и является решением такого неравенства.

Вот какой ответ у нас получился:


лог.неравенства

Что необходимо для решения логарифмических неравенств?

А теперь давайте попробуем проанализировать, что нам необходимо для успешного решения логарифмических неравенств?

• Во-первых, сосредоточить все свое внимание и постараться не допускать ошибок при выполнении преобразований, которые даны в этом неравенстве. Также, следует запомнить, что при решении таких неравенств нужно не допускать расширений и сужений ОДЗ неравенства, которые могут привести к потере или приобретению посторонних решений.

• Во-вторых, при решении логарифмических неравенств необходимо научиться мыслить логически и понимать разницу между такими понятиями, как система неравенств и совокупность неравенств, чтобы вы без проблем смогли осуществлять отбор решений неравенства, при этом руководствуясь его ОДЗ.

• В-третьих, для успешного решения таких неравенств каждый из вас должен отлично знать все свойства элементарных функций и четко понимать их смысл. К таким функциям относятся не только логарифмические, но и рациональные, степенные, тригонометрические и т.д., одним словом, все те, которые вы изучали на протяжении школьного обучения алгебры.

Как видите, изучив тему о логарифмических неравенствах, в решении этих неравенств нет ничего сложного при условии, если вы будете внимательны и настойчивы в достижении поставленных целей. Чтобы в решении неравенств не возникало никаких проблем, нужно как можно больше тренироваться, решая различные задания и при этом запоминать основные способы решения таких неравенств и их систем. При неудачных решениях логарифмических неравенств, следует внимательно проанализировать свои ошибки, чтобы в будущем не возвращаться к ним снова.

Домашнее задание

Для лучшего усвоения темы и закрепления пройденного материала, решите следующие неравенства:


лог.неравенства