KNOWLEDGE HYPERMARKET


Почему протекают химические реакции

Гипермаркет знаний>>Химия>>Химия 11 класс>> Химия: Почему протекают химические реакции

Предсказание возможности осуществления той или иной реакции — одна из основных задач, которая стоит перед химиками.

На бумаге можно написать уравнение любой химической реакции («бумага все стерпит»), а возможна ли такая реакция практически?

В одних случаях (например, при обжиге известняка: СаСО3—> СаО + С02) достаточно повысить температуру, чтобы реакция началась, а в других (например, восстановление кальция из его оксида водородом: СаО + Н2 —>Са + Н20) реакцию невозможно осуществить ни при каких условиях!

Экспериментальная проверка возможности протекания той или иной реакции в разных условиях — дело трудоемкое и неэффективное. Но можно теоретически ответить на такой вопрос, основываясь на законах химической термодинамики (с которыми вы знакомились на уроках физики).

Один из наиболее важных законов природы (первый закон термодинамики) — это закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, а только переходит из одной формы в другую.

В общем случае энергия объекта складывается из трех ее основных видов: кинетической, потенциальной, внутренней. Какой из этих видов наиболее важен при рассмотрении химических реакций? Конечно же внутренняя энергия (е)! Ведь она складывается из кинетической энергии движения атомов, молекул, ионов; из энергии их взаимного притяжения и отталкивания; из энергии, связанной с движением электронов в атоме, их притяжением к ядру, взаимным отталкиванием электронов и ядер, а также внутриядерной энергии.

Вам известно, что при химических реакциях одни химические связи разрушаются, а другие образуются; при этом изменяется электронное состояние атомов, их взаимоположение, а потому и внутренняя энергия продуктов реакции отличается от внутренней энергии реагентов.

Рассмотрим два возможных случая.

1. E реагентов > E продуктов. Исходя из закона сохранения энергии, в результате такой реакции энергия должна выделяться в окружающую среду: нагревается воздух, пробирка, автомобильный двигатель, продукты реакции.

Реакции, при которых выделяется энергия и нагревается окружающая среда, называют экзотермическими (рис. 23).
Почему протекают химические реакции


2. Е реагентов < Е продуктов. Исходя из закона сохранения энергии, следует предположить, что исходные вещества при таких процессах должны поглощать энергию из окружающей среды, температура реагирующей системы должна понижаться.

Реакции, при протекании которых энергия поглощается из окружающей среды, называют эндотермическими.

Энергия, которая выделяется или поглощается в химической реакции, называется, как вы знаете, тепловым эффектом этой реакции. Этот термин используют повсеместно, хотя точнее было бы говорить об энергетическом эффекте реакции.

Тепловой эффект реакции выражается в единицах энергии. Энергия отдельных атомов и молекул — величина незначительная. Поэтому тепловые эффекты реакций относят обычно к тем количествам веществ, которые определены уравнением, и выражают в Дж или кДж.

Уравнение химической реакции, в котором указан тепловой эффект, как вы уже знаете, называется термохимическим уравнением.

Например, термохимическое уравнение:

2Н2 + 02 = 2Н20 + 484 кДж

Знание тепловых эффектов химических реакций имеет большое практическое значение. Например, при проектировании химического реактора важно предусмотреть или приток энергии для поддержания реакции путем подогрева реактора, или, наоборот, отвод избытка теплоты, чтобы не было перегрева реактора со всеми вытекающими отсюда последствиями, вплоть до взрыва.

Если реакция проходит между несложными молекулами, то подсчитать тепловой эффект реакции достаточно просто.

Например:

Н2 + Сl2 —> 2НСl

Энергия затрачивается на разрыв двух химических связей Н—Н и Сl—Сl, энергия выделяется при образовании двух химических связей Н—Сl. Именно в химических связях сосредоточена важнейшая составляющая внутренней энергии соединения. Зная энергии этих связей, можно по разности узнать тепловой эффект реакции (Фр).

Eн-н = 436 кДж/моль, Есl-сl = 240 кДж/моль,

Eнсl = 430 кДж/моль,

Qp= 2 • 430 - 1 • 436 - 1 • 240 = 184 кДж.

Следовательно, данная реакция — экзотермическая.

А как, например, рассчитать тепловой эффект реакции разложения карбоната кальция? Ведь это соединение немолекулярного строения. Как точно определить, какие именно связи и сколько их разрушается, какова их энергия, какие связи и сколько их образуется в оксиде кальция?

Для расчета тепловых эффектов реакций используют значения величин теплот образования всех участвующих в реакции химических соединений (исходных и продуктов).

Теплота образования соединения (Qобр) — это тепловой эффект реакции образования одного моля соединения из простых веществ, устойчивых в стандартных условиях (25 °С, 1 атм.).

При этих условиях теплота образования простых веществ равна нулю по определению.

С + 02 = С02 + 394 кДж

0,5Т2 + 0,502 = N0 - 90 кДж,

где 394 кДж и -90 кДж — теплоты образования С02 и N0 соответственно.

Если данное химическое соединение можно непосредственно получить из простых веществ, причем реакция идет количественно (100% -ный выход продуктов), достаточно провести реакцию и измерить ее тепловой эффект с помощью специального прибора — калориметра. Так определяют теплоты образования многих оксидов, хлоридов, сульфидов и т. п. Однако подавляющее большинство химических соединений трудно или невозможно непосредственно получить из простых веществ.

Например, сжигая уголь в кислороде, нельзя определить Qобр угарного газа СО, так как всегда идет и процесс полного окисления. В этом случае на помощь приходит закон, сформулированный в прошлом веке петербургским академиком Г. И. Гессом.

Тепловой эффект химической реакции не зависит от промежуточных стадий (при условии, что исходные вещества и продукты реакции одинаковы).

Знание теплот образования соединений позволяет оценить их относительную устойчивость, а также рассчитать тепловые эффекты реакций.

Тепловой эффект химической реакции равен сумме теплот образования всех продуктов реакции минус сумма теплот образования всех реагентов (с учетом коэффициентов в уравнении реакции).

Организм человека — это уникальный «химический реактор», в котором идет множество разнообразных химических реакций. Их главное отличие от процессов, протекающих в пробирке, колбе, промышленной установке, состоит в том, что в организме все реакции протекают в «мягких» условиях (атмосферное давление, невысокая температура), при этом образуется мало вредных побочных продуктов.

Процесс окисления органических веществ кислородом — главный источник энергии, а его основные конечные продукты — С02 и Н20.

Эта выделившаяся энергия представляет собой большую величину, и если бы пища окислялась в организме быстро и полностью, то уже несколько съеденных кусочков сахара вызвали бы перегревание организма. Но биохимические процессы, суммарный тепловой эффект которых по закону Гесса не зависит от механизма и является постоянной величиной, идут ступенчато, как бы растянуты во времени. Поэтому организм не «сгорает», а экономно расходует эту энергию на процессы жизнедеятельности. Но всегда ли происходит так?

Каждый человек должен хотя бы приблизительно представлять, сколько энергии поступает в его организм с пищей и сколько расходуется в течение суток.

Одна из основ рационального питания такова: количество поступающей с пищей энергии не должно превышать расход энергии (или быть меньше) более чем на 5%, иначе нарушается обмен веществ, человек полнеет или худеет.

Энергетический эквивалент пищи — ее калорийность, выражаемая в килокалориях на 100 г продукта (часто указывают на упаковке, можно также найти в специальных справочниках и книгах по кулинарии). А расход энергии в организме зависит от возраста, пола, интенсивности труда. Например, женщине (секретарь, бухгалтер) требуется в сутки около 2100 ккал, а мужчине (лесоруб, бетонщик, шахтер) ежесуточно необходимы приблизительно 4300 ккал.

Наиболее полезно питание с невысокой калорийностью, но с наличием всех компонентов в пище (белков, жиров, углеводов, минеральных веществ, витаминов, микроэлементов).

Энергетическая ценность продуктов питания и теплотворная способность топлива связаны с экзотермическими реакциями их окисления. Движущей силой таких реакций является «стремление» системы к состоянию с наименьшей внутренней энергией.

Экзотермические реакции начинаются самопроизвольно, или требуется только небольшой «толчок» — первоначальная подача энергии.

А что же тогда является движущей силой эндотермических реакций, в ходе которых тепловая энергия поступает из окружающей среды и запасается в продуктах реакции, превращаясь в их внутреннюю энергию? Эта «сила» связана со стремлением любой системы к наиболее вероятному состоянию, которое характеризуется максимальным беспорядком, ее называют энтропией. Например, молекулы, входящие в состав воздуха, не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение, так как стремление к наиболее вероятному состоянию заставляет молекулы беспорядочно распределяться в пространстве.

Представьте, что вы в стакан насыпали разные орехи. Практически невозможно добиться при встряхивании их расслоения, упорядоченности, так как и в этом случае система будет стремиться к наиболее вероятному состоянию, при котором беспорядок в системе возрастает, поэтому орехи всегда будут перемешаны. Причем чем больше частиц мы имеем, тем вероятность беспорядка больше. Самый большой порядок в химических системах — в идеальном кристалле при температуре абсолютного нуля. Говорят, что энтропия в данном случае равна нулю. С повышением температуры в кристалле начинают усиливаться беспорядочные колебания атомов (молекул, ионов). Энтропия увеличивается. Особенно резко это происходит в момент плавления при переходе от твердого тела к жидкости и еще в большей степени — в момент испарения при переходе от жидкости к газу.

Энтропия газов значительно превышает энтропию жидких и тем более твердых тел. Если вы прольете немного бензина в закрытом помещении, например в гараже, то скоро почувствуете его запах во всем объеме помещения. Происходит испарение (эндотермический процесс) и диффузия, беспорядочное распределение паров бензина по всему объему. Пары бензина имеют большую энтропию по сравнению с жидкостью.

Процесс кипения воды с энергетической точки зрения тоже эндотермический процесс, но выгоден с точки зрения увеличения энтропии при переходе жидкости в пар. При температуре 100 °С энтропийный фактор «перетягивает» энергетический — вода начинает кипеть — пары воды имеют большую энтропию по сравнению с жидкой водой.


Таблица 11 Некоторые значения стандартной молярной энтропии

Почему протекают химические реакции


Анализируя данные, приведенные в таблице 11, обратите внимание, насколько мало значение энтропии для алмаза, имеющего очень правильную структуру. Вещества, образованные более


Стандартная молярная энтропия — это значение энтропии для 1 моль вещества при температуре 298 К и давлении 105 Па.

сложными частицами, обладают очень большими значениями энтропии. Например, энтропия этана больше энтропии метана. Эндотермические реакции — это как раз те реакции, в которых наблюдается достаточно сильный рост энтропии, например, за счет образования газообразных продуктов из жидких или твердых веществ или же за счет увеличения числа частиц. Например:

СаС03 —> СаО + С02 - Q

Сделаем выводы:

1.    Направление химической реакции определяется двумя факторами: стремлением к уменьшению внутренней энергии с выделением энергии и стремлением к максимальному беспорядку, то есть к увеличению энтропии.

2.    Эндотермическую реакцию можно заставить идти, если она сопровождается увеличением энтропии.

3.    Энтропия увеличивается при повышении температуры и особенно сильно при фазовых переходах: твердое — жидкое, твердое — газообразное.

4.    Чем выше температура, при которой проводят реакцию, тем большее значение будет иметь энтропийный фактор по сравнению с энергетическим.

Существуют экспериментальные и теоретические методы определения знтропий различных химических соединений. Используя эти методы, можно количественно рассчитать изменения энтропии при протекании конкретной реакции аналогично тому, как это делается для теплового эффекта реакции. В результате появляется возможность предсказать направление химической реакции (табл. 12).

Составлены специальные справочные данные, которые включают сравнительную характеристику этих величин с учетом температуры.

Вернемся к случаю № 2 (см. табл. 12).

Все живое на нашей планете — от вирусов и бактерий до человека — состоит из высокоорганизованной материи, которая более упорядочена по сравнению с окружающим миром. Например, белок. Вспомните его структуры: первичная, вторичная, третичная. Вы уже хорошо знакомы и с «веществом наследственности» — ДНК, молекулы которого состоят из расположенных в строго определенной последовательности структурных единиц. Значит, синтез белка или ДНК сопровождается огромным уменьшением энтропии.

Tаблица 12 Возможность протекания химических реакций в зависимости от изменения энергии и энтропии

Почему протекают химические реакции


Кроме того, исходный строительный материал для роста растений и животных образуется в самих растениях из воды Н20 и углекислого газа С02 в процессе фотосинтеза:

6Н20 + 6С02(г) —> С6Н1206 + 602(г)

В этой реакции энтропия уменьшается, идет реакция с поглощением световой энергии. Значит, процесс эндотермический! Таким образом, реакции, которым мы обязаны жизнью, оказываются термодинамически запрещенными. Но они идут! А используется при этом энергия световых квантов в видимой области спектра, которая намного больше тепловой энергии (инфракрасных квантов). В природе эндотермические реакции с уменьшением энтропии, как вы видите, протекают в определенных условиях. Химики пока не могут создать такие условия искусственно.

1.    При сгорании 7 г этилена выделяется 350 кДж теплоты. Определите тепловой эффект реакции.

2.    Термохимическое уравнение реакции полного сгорания ацетилена:

2С2Н2 + 502 = 4С02 + 2Н20 + 2610 кДж Сколько теплоты выделяется при использовании 1,12 л ацетилена?

3.    При соединении 18 г алюминия с кислородом выделяется 547 кДж теплоты. Составьте термохимическое уравнение этой реакции.

4.    На основании того, что при сжигании 6,5 г цинка выделяется теплота, равная 34,8 кДж, определите теплоту образования оксида цинка.

5*. Определите тепловой эффект реакции:

2С2Н6(г) + 702(г) —> 4С02(г) + 6Н20(г), если

Qобр (Н20)(г) = 241,8 кДж/моль;

Qобр (С02)(г) = 393,5 кДж/моль;

Qобр (С2Н6)(г) = 89,7 кДж/моль.

6*. Определите теплоту образования этилена, если

С(тв) + 02(г) = С02(г) +393,5 кДж,

Н2(г) + 0,502(г) = Н20 + 241,8 кДж,

С2Н4(г) + 302(г) = 2С02(г) + 2Н20(г) + 1323 кДж.

7*. Вычислите тепловые эффекты реакций, протекающих в организме:

а)    С6Н1206(т) —> 2С2Н5ОН(ж) + 2С02(г);

б)    С6Н1206(т) + 602(г) —> 6С02(г) + 6Н20 (ж), если Qобр (Н20)(ж) = 285,8 кДж/моль;

Q обр (C02)(г) (см- задачи 5 и 6);Q обр (С2Н50Н)(ж) = 277,6 кДж/моль; Q обр (С6Н1206)(т) = 1273 кДж/моль.

8*. Исходя из следующих данных:

FеО(т) + СО(г) —> Fе(т) + С02(г) + 18,2 кДж, 2СО(г) + 02(г) —> 2С02(г) + 566 кДж, Q обр(Н2O)(г) = 241,8 кДж/моль, вычислите тепловой эффект реакции:

FеО(т) + Н2(г) —> Fе(т) + Н20(г).


презентация урока химии 11 класса, схемы к уроку химии, интересные факты по химии

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.