Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Гармонические колебания

Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Гармонические колебания



                                                     § 22     ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Зная, как связаны между собой ускорение и координата колеблющегося тела, можно на основе математического анализа найти зависимость координаты от времени.

Ускорение — вторая производная координаты по времени. Мгновенная скорость точки, как вам известно из курса математики, представляет собой производную координаты точки по времени. Ускорение точки — это производная ее скорости по времени, или вторая производная координаты по времени. Поэтому уравнение (3.4) можно записать так:
 
Гармонические колебания
 
где х" — вторая производная координаты по времени. Согласно уравнению (3.11) при свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.

Гармонические колебания. Из курса математики известно, что вторые производные синуса и косинуса по их аргументу  пропорциональны самим функциям, взятым с противоположным знаком. В математическом анализе доказывается, что никакие другие функции таким свойством не обладают. Все это позволяет с полным основанием утверждать, что координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или пасинуса. На рисунке 3.6 показано изменение координаты точки со временем по закону косинуса.

Гармонические колебания

Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.


Амплитуда колебаний. Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда может иметь различные значения в зависимости от того, насколько мы смещаем тело от положения равновесия в начальный момент времени, или от того, какая скорость сообщается телу. Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу. Но максимальные значения модуля синуса и модуля косинуса равны единице. Поэтому решение уравнения (3.11) не может выражаться просто синусом или косинусом. Оно должно иметь вид произведения амплитуды колебаний хm на синус или косинус.

Решение уравнения, описывающего свободные колебания. Запишем решение уравнения (3.11) в следующем виде:
 
Гармонические колебания
 
а вторая производная будет равна:


Гармонические колебания
 
Мы получили уравнение (3.11). Следовательно, функция (3.12) есть решение исходного уравнения (3.11). Решением этого уравнения будет также функция

Гармонические колебания


Гармонические колебания


 
График зависимости координаты тела от времени согласно (3.14) представляет собой косинусоиду (см. рис. 3.6).

Период и частота гармонических колебаний. При колебаниях движения тела периодически повторяются. Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний.

Зная период, можно определить частоту колебаний, т. е. число колебаний в единицу времени, например за секунду. Если одно колебание совершается за время Т, то число колебаний за секунду

Гармонические колебания

В Международной системе единиц (СИ) частота колебаний равна единице, если за секунду совершается одно колебание. Единица частоты называется герцем (сокращенно: Гц) в честь немецкого физика Г. Герца.

Число колебаний за 27.02-19.jpg с равно:
 
Гармонические колебания
 
Величина 7.02-20.jpg - циклическая, или круговая, частота колебаний. Если в уравнении (3.14) время t равно одному периоду, то 7.02-20.jpgT = 27.02-19.jpg. Таким образом, если в момент времени t = 0 х = хm, то и в момент времени t = Т х = хm, т. е. через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний нааынают собственной частотой колебательной системы1.

Зависимость частоты и периода свободных колебаний от свойств системы. Собственная частота колебаний тела, прикрепленного к пружине, согласно уравнению (3.13) равна:

Гармонические колебания

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m. Это легко понять: жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела. А чем тело массивнее, тем медленнее оно наменяет скорость под влиянием силы. Период колебаний равен:
 
Гармонические колебания
 
Располагая набором пружин различной жесткости и телами различной массы, нетрудно убедиться на опыте, что формулы (3.13) и (3.18) правильно описывают характер зависимости 7.02-20.jpg и Т от k и m.

Замечательно, что период колебаний тела на пружине и период колебаний маятника при малых углах отклонения не зависят от амплитуды колебаний.

Модуль коэффициента пропорциональности между ускорением 7.02-6.jpgt, и смещением х в уравнении (3.10), описывающем колебания маятника, представляет собой, как и в уравнении (3.11), квадрат циклической частоты. Следовательно, собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Гармонические колебания

Эта формула была впервые получена и проверена на опыте голландским ученым Г. Гюйгенсом — современником И. Ньютона. Она справедлива только для малых углов отклонения нити.

1Часто в дальнейшем для краткости мы будем называть циклическую частоту просто частотой. Отличить циклическую частоту от обычной частоты можно по обозначениям.
 
Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит. Это легко проверить на опыте с различными маятниками. Зависимость периода колебаний от ускорения свободного падения также можно обнаружить. Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Зависимость периода колебаний маятника от значения g используется на практике. Измеряя период колебаний, можно очень точно определить g. Ускорение свободного падения меняется с географической широтой. Но и на данной широте оно не везде одинаково. Ведь плотность земной коры не всюду одинакова. В районах, где залегают плотные породы, ускорение g несколько большее. Это учитывают при поисках полезных ископаемых.

Так, железная руда обладает повышенной плотностью по сравнению с обычными породами. Проведенные под руководством академика А. А. Михайлова измерения ускорения свободного падения под Курском позволили уточнить места залегания железной руды. Сначала они были обнаружены посредством магнитных измерений.

Свойства механических колебаний используются в устройствах большинства электронных весов. Взвешиваемое тело кладут на платформу, под которой установлена жесткая пружина. В результате возникают механические колебания, частота которых измеряется соответствующим датчиком. Микропроцессор, связанный с этим датчиком, переводит частоту колебаний в массу взвешиваемого тела, так как эта частота зависит от массы.

Полученные формулы (3.18) и (3.20) для периода колебаний свидетельствуют о том, что период гармонических колебаний зависит от параметров системы (жесткости пружины, длины нити и т. д.)





Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.


Полный перечень тем по классам, календарный план согласно школьной программе по физике онлайн, видеоматериал по физике для 11 класса скачать


Содержание урока
1236084776 kr.jpg конспект урока
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.