Гипермаркет знаний>>Математика>>Математика 8 класс>>Математика:Множество рациональных чисел
Множество рациональных чисел
1. Некоторые символы математического языка Вам хорошо известны натуральные числа: 1, 2, 3, 4, ... Множество всех натуральных чисел обычно обозначают буквой N. Если к натуральным числам присоединить число 0 и все целые отрицательные числа: -1,-2,-3,-4, ..., — то получится множество целых чисел. Это множество обычно обозначают буквой Z. Если к множеству целых чисел присоединить все обыкновенные дроби: и т. д., — то получится множество рациональных чисел. Это множество обычно обозначают буквой Q. Любое целое число m можно записать в виде дроби , поэтому справедливо утверждение о том, что множество Q рациональных чисел — это ножество, состоящее из чисел вида 1. Вместо фразы «n — натуральное число» можно писать (читается: «элемент n принадлежит множеству N»), Математический символ называют знаком принадлежности. Математический символ с называют знаком включения (одного множества в другое). Вообще, в математике запись х X означает, что х — один из элементов множества X. Запись означает, что множество А представляет собой часть множества В. Математики чаще говорят так: А — подмножество множества Обратите внимание: множества в математике обычно обозначают прописными буквами, а элементы множества — строчными буквами. И еще на один момент обратите внимание: знаки принадлежности (элемент принадлежит множеству) и включения (одно множество содержится в другом) — различные, соответственно А как записать, что элемент х не принадлежит множеству X или что множество А не является частью (подмножеством) множества В? Используют те же символы, но перечеркнутые косой чертой: . Приведем несколько примеров использования введенных математических символов для сокращения записи верных математических утверждений — их называют также истинными высказываниями.
К рациональным числам, как мы уже не раз подчеркивали, относятся все те числа, с которыми вы успешно оперировали до тех пор, пока не встретились с квадратными корнями. Это были целые числа, обыкновенные дроби, десятичные дроби. Для всех этих чисел можно использовать один и тот же способ записи, который мы сейчас и обсудим.
5 = 5,00000... = 5,(0). Так же обстоит дело и с числом 8,377: 8,377 = 8,377000... = 8,377(0). Чтобы все было аккуратно, говорят так: 8,377 — конечная десятичная дробь, а 8,377000... — бесконечная десятичная дробь. Вообще, любое рациональное число можно записать в виде бесконечной десятичной периодической дроби. Замечание. Этот вывод удобен для теории, но не очень удобен для практики. Ведь если дана конечная десятичная дробь 8,377, то зачем нужна ее запись в виде 8,377(0)? Поэтому обычно говорят так: любое рациональное число можно записать в виде конечной десятичной дроби или в виде бесконечной десятичной периодической дроби. Выше мы показали, как обыкновенную дробь представляют в виде бесконечной периодической десятичной дроби. Верно и обратное: любую бесконечную десятичную периодическую дробь можно представить в виде обыкновенной дроби. Это значит, что любая бесконечная десятичная периодическая дробь есть Покажем на примере, как бесконечную десятичную периодическую дробь превращают в обыкновенную дробь. Пример. Записать в виде обыкновенной дроби бесконечную десятичную периодическую дробь: а) 1,(23); б) 1,5(23). Решение, а) Положим х = 1,(23), т. е. х = 1,232323... . Умножим х на такое число, чтобы запятая передвинулась вправо ровно на один период. Поскольку в периоде содержатся две цифры, нужно, чтобы запятая передвинулась вправо на две цифры, а для этого число х надо умножить на 100. Получим
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: