Гипермаркет знаний>>Математика>>Математика 11 класс>>Математика:Объем наклонного параллелепипеда
Объем наклонного параллелепипеда
Проведем через ребро ВС плоскость, перпендикулярную основанию ABCD, и дополним наклонный параллелепипед треугольной призмой BB1B2CC1C2 (рис. 476, а). Отсечем теперь от полученного тела треугольную призму плоскостью, проходящей через ребро AD и перпендикулярной основанию ABCD. Тогда получим снова параллелепипед. Этот параллелепипед имеет объем, равный объему исходного параллелепипеда. Действительно, достроенная призма и отсекаемая совмещаются параллельным переносом на отрезок АВ, следовательно, имеют одинаковые объемы. При описанном преобразовании параллелепипеда сохраняются площадь его основания и высота. Сохраняются также плоскости двух боковых граней, а две другие становятся перпендикулярными основанию. Применяя еще раз такое преобразование к наклонным граням, получим параллелепипед, у которого все боковые грани перпендикулярны основанию, т. е. прямой параллелепипед. Полученный прямой параллелепипед подвергнем аналогичному преобразованию в прямоугольный параллелепипед, дополняя его сначала призмой 1, а затем отсекая призму 2 (рис. 476, б). Это преобразование также сохраняет объем параллелепипеда, площадь основания и высоту. Объем прямоугольного параллелепипеда равен произведению его измерений. Произведение двух измерений есть площадь основания параллелепипеда, а третье измерение — его высота. Таким образом, у прямоугольного параллелепипеда объем равен произведению площади основания на высоту. Так как при описанном выше преобразовании данного параллелепипеда в прямоугольный каждый раз сохраняются объем, площадь основания и высота, то и у исходного параллелепипеда объем равен произведению площади основания на высоту. Итак, объем любого параллелепипеда равен произведению площади основания на высоту. Решение. Обозначим высоту через X (рис. 477). Тогда
Площадь основания параллелепипеда равна аb . Объем равен
Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: