Гипермаркет знаний>>Математика>>Математика 10 класс>> Уравнение касательной к графику функции
§ 34. Уравнение касательной к графику функции
В § 32 говорилось о том, что если точка М (а; f(а)) принадлежит графику функции у = f(х) и если в этой точке к графику функции можно провести касательную, не перпендикулярную к оси абсцисс, то угловой коэффициент касательной равен f'(а). Мы этим уже несколько раз пользовались. Например, в § 33 было установлено, что график функции у = sin х(синусоида) в начале координат образует с осью абсцисс угол 45° (точнее, касательная к графику в начале координат составляет с положительным направлением оси х угол 45°), а в примере 5 § 33 были найдены точки на графике заданной функции, в которых касательная параллельна оси абсцисс. В примере 2 § 33 было составлено уравнение касательной к графику функции у = х2 в точке х = 1 (точнее, в точке (1; 1), но чаще указывают только значение абсциссы, полагая, что если значение абсциссы известно, то значение ординаты можно найти из уравнения у = f(х)). В этом параграфе мы выработаем алгоритм составления уравнения касательной.к графику любой функции.
Пусть даны функция у = f(х) и точка М (а; f(а)), а также известно, что существует f'(а). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид у = кх+m, поэтому задача состоит в отыскании значений коэффициентов к и m.
С угловым коэффициентом к проблем нет: мы знаем, что к = f'(а). Для вычисления значения т воспользуемся тем, что искомая прямая проходит через точку М(а; f (а)). Это значит, что, если подставить координаты точки М в уравнение прямой, получим верное равенство: f(а) = ка+m, откуда находим, что m = f(а) - ка. Осталось подставить найденные значения коэффициентов кит в уравнение прямой:
Нами получено уравнение касательной к графику функции у = f(х) в точке х=а. Если, скажем, Подставив в уравнение (1) найденные значения а = 1, f(а) = 1 f'(а) = 2, получим: у = 1+2(х-f), т.е. у = 2х-1. Сравните этот результат с тем, что был получен в примере 2 из § 33. Естественно, получилось то же самое. Составим уравнение касательной к графику функции у = tg х в начале координат. Имеем: значит, соs х f'(0) = 1. Подставив в уравнение (1) найденные значения а= 0, f(а)= 0, f'(а) = 1, получим: у=х. Именно поэтому мы и провели тангенсоиду в § 15 (см. рис. 62) через начало координат под углом 45° к оси абсцисс. Решая эти достаточно простые примеры, мы фактически пользовались определенным алгоритмом, который заложен в формуле (1). Сделаем этот алгоритм явным.
АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у = f(x)
1) Обозначить абсциссу точки касания буквой а. 2) Вычислить 1 (а). 3) Найти f'(х) и вычислить f'(а). 4) Подставить найденные числа а, f(а), (а) в формулу (1).
Пример 1. Составить уравнение касательной к графику функции в точке х = 1. Решение. Воспользуемся алгоритмом, учитывая, что в данном примере
На рис. 126 изображена гипербола , построена прямая у= 2-х. Чертеж подтверждает приведенные выкладки: действительно, прямая у = 2-х касается гиперболы в точке(1; 1).
Ответ: у =2- х. Пример 2. К графику функции провести касательную так, чтобы она была параллельна прямой у =4х - 5. Решение. Уточним формулировку задачи. Требование «провести касательную» обычно означает «составить уравнение касательной». Это логично, ибо если человек смог составить уравнение касательной, то вряд ли он будет испытывать затруднения с построением на координатной плоскости прямой по ее уравнению. Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Но в отличие от предыдущего примера здесь имеется неясность: не указана явно абсцисса точки касания. Начнем рассуждать так. Искомая касательная должна быть параллельна прямой у = 4х-5. Две прямые параллельны тогда и только тогда, когда равны их угловые коэффициенты. Значит, угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: Таким образом, значение а мы можем найти из уравнения f'(а)= 4. Имеем: Из уравнения Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2. Теперь можно действовать по алгоритму.
Пример 3. Из точки (0; 1) провести касательную к графику функции Решение. Воспользуемся алгоритмом составления уравнения касательной, учитывая, что в данном примере Заметим, что и здесь, как в примере 2, не указана явно абсцисса точки касания. Тем не менее действуем по алгоритму.
По условию касательная проходит через точку (0; 1). Подставив в уравнение (2) значения х = 0, у = 1, получим: Как видите, в этом примере только на четвертом шаге алгоритма нам удалось найти абсциссу точки касания. Подставив значение а =4 в уравнение (2), получим:
На рис. 127 представлена геометрическая иллюстрация рассмотренного примера: построен график функции
В § 32 мы отметили, что для функции у = f(х), имеющей производную в фиксированной точке х, справедливо приближенное равенство:
Для удобства дальнейших рассуждений изменим обозначения: вместо х будем писать а, вместо будем писать х и соответственно вместо будем писать х-а. Тогда написанное выше приближенное равенство примет вид:
А теперь взгляните на рис. 128. К графику функции у = f(х) проведена касательная в точке М (а; f (а)). Отмечена точка х на оси абсцисс близко от а. Ясно, что f(х) — ордината графика функции в указанной точке х. А что такое f(а) + f'(а) (х-а)? Это ордината касательной, соответствующая той же точке х — см. формулу (1). В чем же смысл приближенного равенства (3)? В том, что для вычисления приближенного значения функции берут значение ординаты касательной.
Пример 4. Найти приближенное значение числового выражения 1,027. Решение. Речь идет об отыскании значения функции у = х7 в точке х = 1,02. Воспользуемся формулой (3), учтя, что в данном примере В итоге получаем:
Если мы воспользуемся калькулятором, то получим: 1,027 = 1,148685667... Как видите, точность приближения вполне приемлема. Ответ: 1,027 =1,14.
А.Г. Мордкович Алгебра 10 класс
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|