Личные инструменты

2168
з математики

132
учня

168
для 11 класу

443
відкореговано


Вашій увазі

24638
уроків


Первообразная и неопределенный интеграл

Гипермаркет знаний>>Математика>>Математика 10 класс>> Первообразная и неопределенный интеграл


§ 37. Первообразная и неопределенный интеграл


1. Первообразная


В предыдущих параграфах мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Мы убедились в том, что производная имеет многочисленные применения: производная — это скорость движения (или, обобщая, скорость протекания любого процесса); производная — это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) — искомый закон движения. Известно, что s'(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Задание

Сразу заметим, что пример решен верно, но неполно. Мы получили, что Формула На самом деле, задача имеет бесконечно много решений: любая функция вида Задание произвольная константа, может служить законом движения, поскольку

Задание

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s0, то из равенства Формула получаем s(0) = 0+С, т.е.S0 = С. Теперь закон движения определен однозначно: Формула
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х2) и извлечение квадратного корня A10436.jpg синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной — интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у'= f'(x)• Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у'=f'(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F'(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают ( в качестве естественной области определения функции).


Приведем примеры:

1) Функция у = х2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х2)' =2х.
2) функция у — х3 является первообразной для функции у-Зх2, поскольку для всех х справедливо равенство (х3)' = Зх2.
3)    Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)' =соsх.
4)    Функция A10437.jpg являетя первообразной для функции Формула на промежутке A10439.jpg поскольку для всех х > 0 справедливо равенство Задание
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.

Таблица


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х5 первообразной, как вы установите, служит функция A10442.jpg (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) — первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С — произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) — первообразная для f(x)».


2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова — так удобнее для применения правила на практике


Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х'; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х2 + sin х (и вообще любая функция вида У = х1 + sinх + С).   
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.


Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3. Найти первообразные для заданных функций:

Задание
Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б)    Первообразной для соз x служит sin x; значит, для функции A10444.jpg  первообразной будет функция A10445.jpg
в)    Первообразной для х3 служит A10446.jpg первообразной для х служит A10447.jpg первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х3 + 8х-1 служит функция Задание
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Задание
Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) — первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

Задание
В самом деле,

Задание
Это и означает, что Задание является первообразной для функции у = f(кх+m).   
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель» A10453.jpg
Пример 4. Найти первообразные для заданных функций:

Задание
Решение, а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция Задание
б) Первообразной для соз х служит sin х; значит, для функции A10456.jpg первообразной будет функция

Задание

в) Первообразной для х7 служит A10458.jpg значит, для функции у=(4-5х)7 первообразной будет функция Задание


3. Неопределенный интеграл


Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.


Теорема


Доказательство. 1. Пусть у = F(х) — первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F'(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F1(х) и у=F(х) — две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F'(х) = f(х).

Рaсмотрим функцию у = F1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))' = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F1(х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.  


Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость — производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция Задание, а множество всех первообразных имеет вид:

Задание
Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Задание
Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Задание


Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

Формула
(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Интегралі


Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.


Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Формула

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Формула

Правило 3. Если 

Формула

Пример 6. Найти неопределенные интегралы:

Задание
Решение, а) Воспользовавшись первым и вторым правилами интегрирования, получим:

Задание
Теперь воспользуемся 3-й и 4-й формулами интегрирования:

Задание

В итоге получаем:

Задание

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:

Задание
в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Формула

Тогда последовательно находим:

Задание



А.Г. Мордкович Алгебра 10 класс




Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.